首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Divided differences forf (x, y) for completely irregular spacing of points (x i ,y i ) are developed here by a natural generalization of Newton's scheme. Existing bivariate schemes either iterate the one-dimensional scheme, thus constraining (x i ,y i ) to be at corners of rectangles, or give polynomials Σa jk x j y k having more coefficients than interpolation conditions. Here the generalizedn th divided difference is defined by (1)\(\left[ {01... n} \right] = \sum\limits_{i = 0}^n {A_i f\left( {x_i , y_i } \right)} \) where (2)\(\sum\limits_{i = 0}^n {A_i x_i^j , y_i^k = 0} \), and 1 for the last or (n+1)th equation, for every (j, k) wherej+k=0, 1, 2,... in the usual ascending order. The gen. div. diff. [01...n] is symmetric in (x i ,y i ), unchanged under translation, 0 forf (x, y) an, ascending binary polynomial as far asn terms, degree-lowering with respect to (X, Y) whenf(x, y) is any polynomialP(X+x, Y+y), and satisfies the 3-term recurrence relation (3) [01...n]=λ{[1...n]?[0...n?1]}, where (4) λ= |1...n|·|01...n?1|/|01...n|·|1...n?1|, the |...i...| denoting determinants inx i j y i k . The generalization of Newton's div. diff. formula is (5)
$$\begin{gathered} f\left( {x, y} \right) = f\left( {x_0 , y_0 } \right) - \frac{{\left| {\alpha 0} \right|}}{{\left| 0 \right|}}\left[ {01} \right] + \frac{{\left| {\alpha 01} \right|}}{{\left| {01} \right|}}\left[ {012} \right] - \frac{{\left| {\alpha 012} \right|}}{{\left| {012} \right|}}\left[ {0123} \right] + \cdots + \hfill \\ + \left( { - 1} \right)^n \frac{{\left| {\alpha 01 \ldots n - 1} \right|}}{{\left| {01 \ldots n - 1} \right|}}\left[ {01 \ldots n} \right] + \left( { - 1} \right)^{n + 1} \frac{{\left| {\alpha 01 \ldots n} \right|}}{{\left| {01 \ldots n} \right|}}\left[ {01 \ldots n} \right], \hfill \\ \end{gathered} $$  相似文献   

2.
Let χ = {χ n } n=0 be the Haar system normalized in L 2(0, 1) and M = {M s } s=1 be an arbitrary, increasing sequence of nonnegative integers. For any subsystem of χ of the form {φ k } = χS = {χ n } nS , where S = S(M) = {n k } k=1 = {nV[p]: pM}, V[0] = {1, 2} and V[p] = {2 p + 1, 2 p + 2, …, 2 p+1} for p = 1, 2, … a series of the form Σ i=1 a i φ i with a i ↘ 0 is constructed, that is universal with respect to partial series in all classes L r (0, 1), r ∈ (0, 1), in the sense of a.e. convergence and in the metric ofL r (0, 1). The constructed series is universal in the class of all measurable, finite functions on [0, 1] in the sense of a.e. convergence. It is proved that there exists a series by Haar system with decreasing coefficients, which has the following property: for any ? > 0 there exists a measurable function µ(x), x ∈ [0, 1], such that 0 ≤ µ(x) ≤ 1 and |{x ∈ [0, 1], µ(x) ≠ = 1}| < ?, and the series is universal in the weighted space L µ[0, 1] with respect to subseries, in the sense of convergence in the norm of L µ[0, 1].  相似文献   

3.
Suppose each of kn o(1) players holds an n-bit number x i in its hand. The players wish to determine if ∑ ik x i =s. We give a public-coin protocol with error 1% and communication O(k logk). The communication bound is independent of n, and for k≥3 improves on the O(k logn) bound by Nisan (Bolyai Soc. Math. Studies; 1993).  相似文献   

4.
For any x ∈ [0, 1), let x = [? 1, ? 2, …,] be its dyadic expansion. Call r n (x):= max{j ? 1: ? i+1 = … = ? i+j = 1, 0 ? i ? n ? j} the n-th maximal run-length function of x. P.Erdös and A.Rényi showed that \(\mathop {\lim }\limits_{n \to \infty } \) r n (x)/log2 n = 1 almost surely. This paper is concentrated on the points violating the above law. The size of sets of points, whose runlength function assumes on other possible asymptotic behaviors than log2 n, is quantified by their Hausdorff dimension.  相似文献   

5.
We consider the set S r,n of periodic (with period 1) splines of degree r with deficiency 1 whose nodes are at n equidistant points xi=i / n. For n-tuples y = (y0, ... , yn-1), we take splines s r,n (y, x) from S r,n solving the interpolation problem
$$s_{r,n} (y,t_i ) = y_i,$$
where t i = x i if r is odd and t i is the middle of the closed interval [x i , x i+1 ] if r is even. For the norms L r,n * of the operator ys r,n (y, x) treated as an operator from l1 to L1 [0, 1] we establish the estimate
$$L_{r,n}^ * = \frac{4}{{\pi ^2 n}}log min(r,n) + O\left( {\frac{1}{n}} \right)$$
with an absolute constant in the remainder. We study the relationship between the norms L r,n * and the norms of similar operators for nonperiodic splines.
  相似文献   

6.
Let x 0, x 1,? , x n , be a set of n + 1 distinct real numbers (i.e., x i x j , for ij) and y i, k , for i = 0,1,? , n, and k = 0 ,1 ,? , n i , with n i ≥ 1, be given of real numbers, we know that there exists a unique polynomial p N ? 1(x) of degree N ? 1 where \(N={\sum }_{i=0}^{n}(n_{i}+1)\), such that \(p_{N-1}^{(k)}(x_{i})=y_{i,k}\), for i = 0,1,? , n and k = 0,1,? , n i . P N?1(x) is the Hermite interpolation polynomial for the set {(x i , y i, k ), i = 0,1,? , n, k = 0,1,? , n i }. The polynomial p N?1(x) can be computed by using the Lagrange polynomials. This paper presents a new method for computing Hermite interpolation polynomials, for a particular case n i = 1. We will reformulate the Hermite interpolation polynomial problem and give a new algorithm for giving the solution of this problem, the Matrix Recursive Polynomial Interpolation Algorithm (MRPIA). Some properties of this algorithm will be studied and some examples will also be given.  相似文献   

7.
The author has established that if [λn] is a convex sequence such that the series Σn -1λn is convergent and the sequence {K n} satisfies the condition |K n|=O[log(n+1)]k(C, 1),k?0, whereK n denotes the (R, logn, 1) mean of the sequence {n log (n+1)a n}, then the series Σlog(n+1)1-kλn a n is summable |R, logn, 1|. The result obtained for the particular casek=0 generalises a previous result of the author [1].  相似文献   

8.
We prove generalized Hyers-Ulam–Rassias stability of the cubic functional equation f(kx+y)+f(kx?y)=k[f(x+y)+f(x?y)]+2(k 3?k)f(x) for all \(k\in \Bbb{N}\) and the quartic functional equation f(kx+y)+f(kx?y)=k 2[f(x+y)+f(x?y)]+2k 2(k 2?1)f(x)?2(k 2?1)f(y) for all \(k\in \Bbb{N}\) in non-Archimedean normed spaces.  相似文献   

9.
We consider the problem of searching for a best LAD-solution of an overdetermined system of linear equations Xa=z, X∈?m×n, mn, \(\mathbf{a}\in \mathbb{R}^{n}, \mathbf {z}\in\mathbb{R}^{m}\). This problem is equivalent to the problem of determining a best LAD-hyperplane x?a T x, x∈? n on the basis of given data \((\mathbf{x}_{i},z_{i}), \mathbf{x}_{i}= (x_{1}^{(i)},\ldots,x_{n}^{(i)})^{T}\in \mathbb{R}^{n}, z_{i}\in\mathbb{R}, i=1,\ldots,m\), whereby the minimizing functional is of the form
$F(\mathbf{a})=\|\mathbf{z}-\mathbf{Xa}\|_1=\sum_{i=1}^m|z_i-\mathbf {a}^T\mathbf{x}_i|.$
An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F is convex, and therefore the point a ?∈? n is the point of a global minimum of the functional F if and only if 0?F(a ?).
Motivation for the construction of the algorithm was found in a geometrically visible algorithm for determining a best LAD-plane (x,y)?αx+βy, passing through the origin of the coordinate system, on the basis of the data (x i ,y i ,z i ),i=1,…,m.  相似文献   

10.
A set of integers is called sum-free if it contains no triple (x, y, z) of not necessarily distinct elements with x + y = z. In this paper, we provide a structural characterisation of sum-free subsets of {1, 2,..., n} of density at least 2/5 ? c, where c is an absolute positive constant. As an application, we derive a stability version of Hu’s Theorem [Proc. Amer. Math. Soc. 80 (1980), 711–712] about the maximum size of a union of two sum-free sets in {1, 2,..., n}. We then use this result to show that the number of subsets of {1, 2,..., n} which can be partitioned into two sum-free sets is Θ(24n/5), confirming a conjecture of Hancock, Staden and Treglown [arXiv:1701.04754].  相似文献   

11.
A metacyclic group H can be presented as 〈α,β: αn = 1, βm = αt, βαβ?1 = αr〉 for some n, m, t, r. Each endomorphism σ of H is determined by \(\sigma(\alpha)=\alpha^{x_1}\beta^{y_1}, \sigma(\beta)=\alpha^{x_2}\beta^{y_2}\) for some integers x1, x2, y1, y2. We give sufficient and necessary conditions on x1, x2, y1, y2 for σ to be an automorphism.  相似文献   

12.
It was proved that the complexity of square root computation in the Galois field GF(3s), s = 2kr, is equal to O(M(2k)M(r)k + M(r) log2r) + 2kkr1+o(1), where M (n) is the complexity of multiplication of polynomials of degree n over fields of characteristics 3. The complexity of multiplication and division in the field GF(3s) is equal to O(M(2k)M(r)) and O(M(2k)M(r)) + r1+o(1), respectively. If the basis in the field GF(3r) is determined by an irreducible binomial over GF(3) or is an optimal normal basis, then the summands 2kkr1+o(1) and r1+o(1) can be omitted. For M(n) one may take n log2nψ(n) where ψ(n) grows slower than any iteration of the logarithm. If k grow and r is fixed, than all the estimates presented here have the form Or (M (s) log 2s) = s (log 2s)2ψ(s).  相似文献   

13.
Let d ? 3 be an integer, and set r = 2d?1 + 1 for 3 ? d ? 4, \(\tfrac{{17}}{{32}} \cdot 2^d + 1\) for 5 ? d ? 6, r = d2+d+1 for 7 ? d ? 8, and r = d2+d+2 for d ? 9, respectively. Suppose that Φ i (x, y) ∈ ?[x, y] (1 ? i ? r) are homogeneous and nondegenerate binary forms of degree d. Suppose further that λ1, λ2,..., λ r are nonzero real numbers with λ12 irrational, and λ1Φ1(x1, y1) + λ2Φ2(x2, y2) + · · · + λ r Φ r (x r , y r ) is indefinite. Then for any given real η and σ with 0 < σ < 22?d, it is proved that the inequality
$$\left| {\sum\limits_{i = 1}^r {{\lambda _i}\Phi {}_i\left( {{x_i},{y_i}} \right) + \eta } } \right| < {\left( {\mathop {\max \left\{ {\left| {{x_i}} \right|,\left| {{y_i}} \right|} \right\}}\limits_{1 \leqslant i \leqslant r} } \right)^{ - \sigma }}$$
has infinitely many solutions in integers x1, x2,..., x r , y1, y2,..., y r . This result constitutes an improvement upon that of B. Q. Xue.
  相似文献   

14.
Let ξ12,... be independent random variables with distributions F1F2,... in a triangular array scheme (F i may depend on some parameter). Assume that Eξ i = 0, Eξ i 2 < ∞, and put \(S_n = \sum {_{i = 1}^n \;} \xi _i ,\;\overline S _n = \max _{k \leqslant n} S_k\). Assuming further that some regularly varying functions majorize or minorize the “averaged” distribution \(F = \frac{1}{n}\sum {_{i = 1}^n F_i }\), we find upper and lower bounds for the probabilities P(S n > x) and \(P(\bar S_n > x)\). We also study the asymptotics of these probabilities and of the probabilities that a trajectory {S k } crosses the remote boundary {g(k)}; that is, the asymptotics of P(maxkn(S k ? g(k)) > 0). The case n = ∞ is not excluded. We also estimate the distribution of the first crossing time.  相似文献   

15.
It is shown that if P m α,β (x) (α, β > ?1, m = 0, 1, 2, …) are the classical Jaboci polynomials, then the system of polynomials of two variables {Ψ mn α,β (x, y)} m,n=0 r = {P m α,β (x)P n α,β (y)} m, n=0 r (r = m + nN ? 1) is an orthogonal system on the set Ω N×N = ?ub;(x i , y i ) i,j=0 N , where x i and y i are the zeros of the Jacobi polynomial P n α,β (x). Given an arbitrary continuous function f(x, y) on the square [?1, 1]2, we construct the discrete partial Fourier-Jacobi sums of the rectangular type S m, n, N α,β (f; x, y) by the orthogonal system introduced above. We prove that the order of the Lebesgue constants ∥S m, n, N α,β ∥ of the discrete sums S m, n, N α,β (f; x, y) for ?1/2 < α, β < 1/2, m + nN ? 1 is O((mn) q + 1/2), where q = max?ub;α,β?ub;. As a consequence of this result, several approximate properties of the discrete sums S m, n, N α,β (f; x, y) are considered.  相似文献   

16.
Let L be a lattice of finite length, ξ = (x 1,…, x k )∈L k , and yL. The remoteness r(y, ξ) of y from ξ is d(y, x 1)+?+d(y, x k ), where d stands for the minimum path length distance in the covering graph of L. Assume, in addition, that L is a graded planar lattice. We prove that whenever r(y, ξ) ≤ r(z, ξ) for all zL, then yx 1∨?∨x k . In other words, L satisfies the so-called c 1 -median property.  相似文献   

17.
We show that every (possibly unbounded) convex polygon P in \({\mathbb{R}^2}\) with m edges can be represented by inequalities p 1 ≥ 0, . . ., p n ≥ 0, where the p i ’s are products of at most k affine functions each vanishing on an edge of P and n = n(m, k) satisfies \({s(m, k) \leq n(m, k) \leq (1+\varepsilon_m) s(m, k)}\) with s(m,k) ? max {m/k, log2 m} and \({\varepsilon_m \rightarrow 0}\) as \({m \rightarrow \infty}\). This choice of n is asymptotically best possible. An analogous result on representing the interior of P in the form p 1 > 0, . . ., p n >  0 is also given. For km/log2 m these statements remain valid for representations with arbitrary polynomials of degree not exceeding k.  相似文献   

18.
We consider the problem of representing a solution to the Cauchy problem for an ordinary differential equation as a Fourier series in polynomials l r,k α (x) (k = 0, 1,...) that are Sobolev-orthonormal with respect to the inner product
$$\left\langle {f,g} \right\rangle = \sum\limits_{v = 0}^{r - 1} {{f^{(v)}}(0){g^{(v)}}} (0) + \int\limits_0^\infty {{f^{(r)}}(t)} {g^{(r)}}(t){t^\alpha }{e^{ - t}}dt$$
, and generated by the classical orthogonal Laguerre polynomials L k α (x) (k = 0, 1,...). The polynomials l r,k α (x) are represented as expressions containing the Laguerre polynomials L n α?r (x). An explicit form of the polynomials l r,k+r α (x) is established as an expansion in the powers x r+l , l = 0,..., k. These results can be used to study the asymptotic properties of the polynomials l r,k α (x) as k→∞and the approximation properties of the partial sums of Fourier series in these polynomials.
  相似文献   

19.
The circular packing problem (CPP) consists of packing n circles C i of known radii r i , iN={1,?…,?n}, into the smallest containing circle ?. The objective is to determine the coordinates (x i ,?y i ) of the centre of C i , iN, as well as the radius r and centre (x,?y) of ?. CPP, which is a variant of the two-dimensional open-dimension problem, is NP hard. This paper presents an adaptive algorithm that incorporates nested partitioning within a tabu search and applies some diversification strategies to obtain a (near) global optimum. The tabu search is to identify the n circles’ ordering, whereas the nested partitioning is to determine the n circles’ positions that yield the smallest r. The computational results show the efficiency of the proposed algorithm.  相似文献   

20.
Let the sequence {λ i } (i≧0) satisfy condition (1.1) and let {A n} (n≧0) be a sequence of bounded self-adjoint operators over a complex Hilbert spaceH. We give a necessary and sufficient condition in order that {A n} (n≧0) should possess the representation (1.2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号