首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
This paper describes the solution of a steady state natural convection problem in porous media by the dual reciprocity boundary element method (DRBEM). The boundary element method (BEM) for the coupled set of mass, momentum, and energy equations in two dimensions is structured by the fundamental solution of the Laplace equation. The dual reciprocity method is based on augmented scaled thin plate splines. Numerical examples include convergence studies with different mesh size, uniform and non‐uniform mesh arrangement, and constant and linear boundary field discretizations for differentially heated rectangular cavity problems at filtration with Rayleigh numbers of Ra*=25, 50, and 100 and aspect ratios of A=1/2, 1, and 2. The solution is assessed by comparison with reference results of the fine mesh finite volume method (FVM). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we present a class of high‐order accurate cell‐centered arbitrary Lagrangian–Eulerian (ALE) one‐step ADER weighted essentially non‐oscillatory (WENO) finite volume schemes for the solution of nonlinear hyperbolic conservation laws on two‐dimensional unstructured triangular meshes. High order of accuracy in space is achieved by a WENO reconstruction algorithm, while a local space–time Galerkin predictor allows the schemes to be high order accurate also in time by using an element‐local weak formulation of the governing PDE on moving meshes. The mesh motion can be computed by choosing among three different node solvers, which are for the first time compared with each other in this article: the node velocity may be obtained either (i) as an arithmetic average among the states surrounding the node, as suggested by Cheng and Shu, or (ii) as a solution of multiple one‐dimensional half‐Riemann problems around a vertex, as suggested by Maire, or (iii) by solving approximately a multidimensional Riemann problem around each vertex of the mesh using the genuinely multidimensional Harten–Lax–van Leer Riemann solver recently proposed by Balsara et al. Once the vertex velocity and thus the new node location have been determined by the node solver, the local mesh motion is then constructed by straight edges connecting the vertex positions at the old time level tn with the new ones at the next time level tn + 1. If necessary, a rezoning step can be introduced here to overcome mesh tangling or highly deformed elements. The final ALE finite volume scheme is based directly on a space–time conservation formulation of the governing PDE system, which therefore makes an additional remapping stage unnecessary, as the ALE fluxes already properly take into account the rezoned geometry. In this sense, our scheme falls into the category of direct ALE methods. Furthermore, the geometric conservation law is satisfied by the scheme by construction. We apply the high‐order algorithm presented in this paper to the Euler equations of compressible gas dynamics as well as to the ideal classical and relativistic magnetohydrodynamic equations. We show numerical convergence results up to fifth order of accuracy in space and time together with some classical numerical test problems for each hyperbolic system under consideration. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical scheme which is a combination of the dual reciprocity boundary element method (DRBEM) and the differential quadrature method (DQM), is proposed for the solution of unsteady magnetohydrodynamic (MHD) flow problem in a rectangular duct with insulating walls. The coupled MHD equations in velocity and induced magnetic field are transformed first into the decoupled time‐dependent convection–diffusion‐type equations. These equations are solved by using DRBEM which treats the time and the space derivatives as nonhomogeneity and then by using DQM for the resulting system of initial value problems. The resulting linear system of equations is overdetermined due to the imposition of both boundary and initial conditions. Employing the least square method to this system the solution is obtained directly at any time level without the need of step‐by‐step computation with respect to time. Computations have been carried out for moderate values of Hartmann number (M?50) at transient and the steady‐state levels. As M increases boundary layers are formed for both the velocity and the induced magnetic field and the velocity becomes uniform at the centre of the duct. Also, the higher the value of M is the smaller the value of time for reaching steady‐state solution. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In this paper, we present a new family of direct arbitrary–Lagrangian–Eulerian (ALE) finite volume schemes for the solution of hyperbolic balance laws on unstructured meshes in multiple space dimensions. The scheme is designed to be high‐order accurate both in space and time, and the mesh motion, which provides the new mesh configuration at the next time step, is taken into account in the final finite volume scheme that is based directly on a space‐time conservation formulation of the governing PDE system. To improve the computational efficiency of the algorithm, high order of accuracy in space is achieved using the a posteriori MOOD limiting strategy that allows the reconstruction procedure to be carried out with only one reconstruction stencil for any order of accuracy. We rely on an element‐local space‐time Galerkin finite element predictor on moving curved meshes to obtain a high‐order accurate one‐step time discretization, while the mesh velocity is computed by means of a suitable nodal solver algorithm that might also be supplemented with a local rezoning procedure to improve the mesh quality. Next, the old mesh configuration at time level tn is connected to the new one at tn + 1 by straight edges, hence providing unstructured space‐time control volumes, on the boundary of which the numerical flux has to be integrated. Here, we adopt a quadrature‐free integration, in which the space‐time boundaries of the control volumes are split into simplex sub‐elements that yield constant space‐time normal vectors and Jacobian matrices. In this way, the integrals over the simplex sub‐elements can be evaluated once and for all analytically during a preprocessing step. We apply the new high‐order direct ALE algorithm to the Euler equations of compressible gas dynamics (also referred to as hydrodynamics equations) as well as to the magnetohydrodynamics equations and we solve a set of classical test problems in two and three space dimensions. Numerical convergence rates are provided up to fifth order of accuracy in 2D and 3D for both hyperbolic systems considered in this paper. Finally, the efficiency of the new method is measured and carefully compared against the original formulation of the algorithm that makes use of a WENO reconstruction technique and Gaussian quadrature formulae for the flux integration: depending on the test problem, the new class of very efficient direct ALE schemes proposed in this paper can run up to ≈12 times faster in the 3D case. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
With the exponential increase in computing power, modelers of coastal and oceanic regions are capable of simulating larger domains with increased resolution. Typically, these models use graded meshes wherein the size of the elements can vary by orders of magnitude. However, with notably few exceptions, the graded meshes are generated using criteria that neither optimize placement of the node points nor properly incorporate the physics, as represented by discrete equations, underlying tidal flow and circulation to the mesh generation process. Consequently, the user of the model must heuristically adjust such meshes based on knowledge of local flow and topographical features—a rough and time consuming proposition at best. Herein, a localized truncation error analysis (LTEA) is proposed as a means to efficiently generate meshes that incorporate estimates of flow variables and their derivatives. In a one‐dimensional (1D) setting, three different LTEA‐based finite element grid generation methodologies are examined and compared with two common algorithms: the wavelength to Δx ratio criterion and the topographical length scale criterion. Errors are compared on a per node basis. It is shown that solutions based on LTEA meshes are, in general, more accurate (both locally and globally) and more efficient. In addition, the study shows that the first four terms of the ordered truncation error series are in direct competition and, subsequently, that the leading order term of the truncation error series is not necessarily the dominant term. Analyses and results from this 1D study lay the groundwork for developing an efficient mesh generating algorithm suitable for two‐dimensional (2D) models. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The magnetohydrodynamic (MHD) flow of an incompressible, viscous, electrically conducting fluid in a rectangular duct with an external magnetic field applied transverse to the flow has been investigated. The walls parallel to the applied magnetic field are conducting while the other two walls which are perpendicular to the field are insulators. The boundary element method (BEM) with constant elements has been used to cast the problem into the form of an integral equation over the boundary and to obtain a system of algebraic equations for the boundary unknown values only. The solution of this integral equation presents no problem as encountered in the solution of the singular integral equations for interior methods. Computations have been carried out for several values of the Hartmann number (1 ? M ? 10). It is found that as M increases, boundary layers are formed close to the insulated boundaries for both the velocity and the induced magnetic field and in the central part their behaviours are uniform. Selected graphs are given showing the behaviours of the velocity and the induced magnetic field.  相似文献   

8.
In this article, we consider a class of singularly perturbed differential equations of convection-diffusion type with nonlocal boundary conditions. A uniformly convergent numerical method is constructed via nonstandard finite difference and numerical integration methods to solve the problem. The nonlocal boundary condition is treated using numerical integration techniques. Maximum absolute errors and rates of convergence for different values of perturbation parameter and mesh sizes are tabulated for the numerical example considered. The method is shown to be ϵ -uniformly convergent.  相似文献   

9.
Uniform Darcy–Brinkman flow over a surface with periodic rectangular grooves is studied by domain decomposition and matching. It is found that the effect of corrugations is equivalent to replacing the rough surface with a smooth surface with an apparent slip for the bulk flow. Such equivalence would greatly simplify the boundary conditions for porous flow bounded by a rough surface. The slip velocity is larger along the grooves than transverse to the grooves, and is increased by the porous media parameter k.  相似文献   

10.
In this study, matrix representation of the Chebyshev collocation method for partial differential equation has been represented and applied to solve magnetohydrodynamic (MHD) flow equations in a rectangular duct in the presence of transverse external oblique magnetic field. Numerical solution of velocity and induced magnetic field is obtained for steady‐state, fully developed, incompressible flow for a conducting fluid inside the duct. The Chebyshev collocation method is used with a reasonable number of collocations points, which gives accurate numerical solutions of the MHD flow problem. The results for velocity and induced magnetic field are visualized in terms of graphics for values of Hartmann number H≤1000. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
A general analysis has been developed to study the combined effect of the free convective heat and mass transfer on the steady three-dimensional laminar boundary layer flow over a stretching surface. The flow is subject to a transverse magnetic field normal to the plate. The governing three-dimensional partial differential equations for the present case are transformed into ordinary differential equation using three-dimensional similarity variables. The resulting equations, are solved numerically by applying a fifth order Runge-Kutta-Fehlberg scheme with the shooting technique. The effects of the Magnetic field Parameter M, buoyancy parameter N, Prandtl number Pr and Schmidt number Sc are examined on the velocity, temperature and concentration distributions. Numerical data for the skin-friction coefficients, Nusselt and Sherwood numbers have been tabulated for various parametric conditions. The results are compared with known from the literature.  相似文献   

12.
The applicability of a finite element-differential method to the computation of steady two-dimensional low-speed, transonic and supersonic turbulent boundary-layer flows is investigated. The turbulence model chosen for the Reynolds shear stress and turbulent heat flux is the K-? two-equation model. Calculations are extended up to the wall and the exact values of the dependent variables at the wall are used as boundary conditions. A number of transformations are carried out and the assumed solutions at a longitudinal station are represented by complete cubic spline functions. In essence, the method converts the governing partial differential equations into a system of ordinary differential equations by a weighted residuals method and invokes an ordinary differential equation solver for the numerical integration of the reduced initial-value problem. The results of the computations reveal that the method is highly accurate and efficient. Furthermore, the accuracy and applicability of the k-? turbulence model are examined by comparing results of the computations with experimental data. The agreement is very good.  相似文献   

13.
三维有限元六面体网格几何自适应再生成方法   总被引:2,自引:1,他引:1  
基于几何自适应的六面体网再生成方法,提出了一种以栅格法为基本方法,对有限元网格再划分过程中的网格再划分标准、几何形状的获取以及新旧网格之间物理量的传递等关键问题进行了研究.重点介绍了基于几何自适应的六面体网格再生成算法,首先对旧网格实体模型进行识别,根据实体模型几何特征建立加密源点信息场;然后采用栅格法生成核心网格并对...  相似文献   

14.
In this paper, we present an approach of dynamic mesh adaptation for simulating complex 3‐dimensional incompressible moving‐boundary flows by immersed boundary methods. Tetrahedral meshes are adapted by a hierarchical refining/coarsening algorithm. Regular refinement is accomplished by dividing 1 tetrahedron into 8 subcells, and irregular refinement is only for eliminating the hanging points. Merging the 8 subcells obtained by regular refinement, the mesh is coarsened. With hierarchical refining/coarsening, mesh adaptivity can be achieved by adjusting the mesh only 1 time for each adaptation period. The level difference between 2 neighboring cells never exceeds 1, and the geometrical quality of mesh does not degrade as the level of adaptive mesh increases. A predictor‐corrector scheme is introduced to eliminate the phase lag between adapted mesh and unsteady solution. The error caused by each solution transferring from the old mesh to the new adapted one is small because most of the nodes on the 2 meshes are coincident. An immersed boundary method named local domain‐free discretization is employed to solve the flow equations. Several numerical experiments have been conducted for 3‐dimensional incompressible moving‐boundary flows. By using the present approach, the number of mesh nodes is reduced greatly while the accuracy of solution can be preserved.  相似文献   

15.
In the present work, the effect of MHD flow and heat transfer within a boundary layer flow on an upper-convected Maxwell (UCM) fluid over a stretching sheet is examined. The governing boundary layer equations of motion and heat transfer are non-dimensionalized using suitable similarity variables and the resulting transformed, ordinary differential equations are then solved numerically by shooting technique with fourth order Runge–Kutta method. For a UCM fluid, a thinning of the boundary layer and a drop in wall skin friction coefficient is predicted to occur for higher the elastic number. The objective of the present work is to investigate the effect of Maxwell parameter β, magnetic parameter Mn and Prandtl number Pr on the temperature field above the sheet.  相似文献   

16.
17.
The aim of this paper is to introduce a new algorithm for the discretization of second‐order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier–Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
This paper presents a general strategy for designing adaptive space–time finite element discretizations of the nonstationary Navier–Stokes equations. The underlying framework is that of the dual weighted residual method for goal‐oriented a posteriori error estimation and automatic mesh adaptation. In this approach, the error in the approximation of certain quantities of physical interest, such as the drag coefficient, is estimated in terms of local residuals of the computed solution multiplied by sensitivity factors, which are obtained by numerically solving an associated dual problem. In the resulting local error indicators, the effects of spatial and temporal discretization are separated, which allows for the simultaneous adjustment of time step and spatial mesh size. The efficiency of the proposed method for the construction of economical meshes and the quantitative assessment of the error is illustrated by several test examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we propose a parameter-free algorithm to calculate ε, a parameter of small quantity initially introduced into the nonlinear weights of weighted essentially nonoscillatory (WENO) scheme to avoid denominator becoming zero. The new algorithm, based on local smoothness indicators of fifth-order weighted compact nonlinear scheme (WCNS), is designed in a manner to adaptively increase ε in smooth areas to reduce numerical dissipation and obtain high-order accuracy, and decrease ε in discontinuous areas to increase numerical dissipation and suppress spurious numerical oscillations. We discuss the relation between critical points and discontinuities and illustrate that, when large gradient areas caused by high-order critical points are not well resolved with sufficiently small grid spacing, numerical oscillations arise. The new algorithm treats high-order critical points as discontinuities to suppress numerical oscillations. Canonical numerical tests are carried out, and computational results indicate that the new adaptive algorithm can help improve resolution of small scale flow structures, suppress numerical oscillations near discontinuities, and lessen susceptibility to flux functions and interpolation variables for fifth-order WCNS. The new adaptive algorithm can be conveniently generalized to WENO/WCNS with different orders.  相似文献   

20.
The paper presents a generalization of the classical L2-norm weighted least squares method for the numerical solution of a first-order hyperbolic system. This alternative least squares method consists of the minimization of the weighted sum of the L2 residuals for each equation of the system. The order of accuracy of global conservation of each equation of the system is shown to be inversely proportional to the weight associated with the equation. The optimal relative weights between the equations are then determined in order to satisfy global conservation of the energy of the physical system. As an application of the algorithm, the shallow water equations on an irregular domain are first discretized in time and then solved using Laplace modification and the proposed least squares method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号