首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Coordination Chemistry of 1,3-Dithiole-2-selone-4,5-diselenolate (dsise) and 1,3-Dithiole-2-selone-4,5-dithiolate (dmise). Crystal and Molecular Structure of Tetrabutylammonium bis(1,3-dithiole-2-selone-4,5-diselenolato)nickelate(II) and -(III), [(n-C4H9)4N]2[Ni(dsise)2 and (n-C4H9)4[Ni(dsise)2] Syntheses and properties of metal(II) and metal(III) bis-chelates of 1,3-dithiole-2-selone-4,5-diselenolate (dsise), of the general type (Bu4N)n)M(dsise)2] (n =2 : M = Zn, Cd, Hg, Cu, Ni, Pd; n = 1: M = Ni, Au) are reported and compared with chelates of the isologue 1,3-dichalcogenole-2-chalcogenoe-4,5-dichalcogenolate (i. r., 13C-n. m. r., e. p. r., cyclovoltammetric data). The unexpected rearrangement during the syntheses of dsise and 1,3-dithiole-2-selone-4,5-diselenolate (dmise) is characterized by ab-initio SCF calculations. The x-ray structures of (Bu4N)2[Ni(dsise)2] (space group P21/c, a = 8.5556(13) Å, b = 15.0009(12) Å, c = 19.696(3) Å, β = 96.018(7)°, V = 2513.9(5) Å3, Z = 2) and Bu4N[Ni(dsise)2] (space group C2/c, a = 25.133(6) Å, b = 9.828(4) Å, c = 18.104(7) Å, β = 132.81(1)°, V = 3281(2) Å3, Z = 4) are given.  相似文献   

2.
Preparation, Properties and Electronic Raman Spectra of Bis(chloro)-phthalocyaninatoferrate(III), -ruthenate(III) and -osmate(III) Bis(chloro)phthalocyaninatometalates of FeIII, RuIII and OsIII [MCl2Pc(2-)]?, with an electronic low spin ground state are formed by the reaction of [FeClPc(2-)] resp. H[MX2Pc(2?)] (M = Ru, Os; X = Cl, I) with excess chloride in weakly coordinating solvents (DMF, THF) and are isolated as (n-Bu4N) salts. The asym. M? Cl stretch (νas(MCl)) is observed in the f.i.r. at 288 cm?1 (Fe), 295 cm?1 (Ru), 298 cm?1 (Os), νas(MN) at 330 cm?1 (Fe), 327 cm?1 (Ru), and 317 cm?1 (Os); only νs(OsCl) at 311 cm?1 is resonance Raman (r.r.) enhanced with blue excitation. The m.i.r. and FT-Raman spectra are typical for hexacoordinated phthalocyanines of tervalent metal ions. The UV-vis spectra show besides the characteristic π-π* transitions (B, Q, N, L band) of the Pc ligand a number of extra bands at 12–15 kK and 18–24 kK due to trip-doublet and (Pc→M)CT transitions. The effect of metal substitution is discussed. The r.r. spectra obtained by excitation between the B and Q band (λ0 = 476.5 nm) are dominated by the intraconfigurational transition Γ7 Γ 8 arrising from the spin-orbit splitting of the electronic ground state for FeIII at 536 cm?1, for RuIII at 961 cm?1 and OsIII at 3 028 cm?1. Thus the spin-orbit coupling constant increases very greatly down the iron group: FeIII (357 cm?1)< RuIII (641 cm?1)< OsIII (2 019 cm?1). The Γ7 Γ 8-transition is followed by a very pronounced vibrational finestructure being composed in the r.r. spectra by the coupling with νs(MCl), δ(MClN) and the most intense fundamental vibrations of the Pc ligand. In absorption only vibronically induced transitions are observed for the Ru and Os complex at 1 700-2800 rsp. 3100-5800 em?1 instead of the 0-0 phonon transitions. The most intense lines are attributed to combinations of the intense odd vibrational mo-des at ≈ 740 and 1120 cm?1 with ν5(MCI), δ(MClN).  相似文献   

3.
Tetra(n-butyl)ammonium Phthalocyaninato(2–)lithate Tetrahydrofurane and Bis(tetra(n-butyl)ammonium) Phthalocyaninato(2–)lithate Fluoride Hydrate; Synthesis and Crystal Structure Dilithiumphthalocyaninate(2–) reacts with excess tetra(n-butyl)ammonium fluoride trihydrate to yield a mixture of blue tetra(n-butyl)ammonium phthalocyaninato(2–)lithate tetrahydrofurane and bis(tetra(n-butyl)ammonium) phthalocyaninato(2–)lithate fluoride hydrate. The latter crystallizes triclinic with crystal data: a = 8.6480(1) Å; b = 12.620(2) Å; c = 14.866(5) Å; α = 82.44(2)°; β = 87.01(2)°; γ = 75.02°; space group P1 ; Z = 1. Fluoride is not coordinated to lithium. On the contrary, a double-salt is formed, which consists of alternating layers of cations and anions. This arrangement opens a cavity in the centre of the unit cell which shares statistically a fluoride and a disordered fluoride hydrate. Pure tetra(n-butyl)ammonium phthalocyaninato(2–)lithate is obtained as a tetrahydrofurane solvate by the reaction of dilithiumphthalocyaninate(2–) with tetra(n-butyl)ammonium bromide in tetrahydrofurane. The solvate crystallizes monoclinic with crystal data: a = 12.455(5) Å; b = 23.396(5) Å; c = 16.120(5) Å; β = 94.986(5)°; space group P2/c1; Z = 4.  相似文献   

4.
The infra-red (IR) spectroscopic data for a series of twelve sandwich-type homoleptic tetrakis[2,3,9,10,16,17,23,24-octa(octyloxy)phthalocyaninato] rare earth(III)-cadmium(II) quadruple-decker complexes [Pc(OC8H17)8]M[Pc(OC8H17)8]Cd[Pc(OC8H17)8]M[Pc(OC8H17)8] (M = Y, Pr–Yb except Pm) have been collected with resolution of 2 cm−1 and their interpretation in terms tried by analogy with the IR characteristics of bis(phthalocyaninato) cerium double-decker [Pc(OC8H17)8]Ce[Pc(OC8H17)8] in which the macrocyclic ligands exist as the phthalocyanine dianion. Similar to the bis/tris(phthalocyaninato) rare earth sandwich counterparts, all the absorptions contributed primarily by or at least containing contribution from the vibrations of pyrrole or isoindole stretching, breathing or deformation or aza stretching in the IR spectra of these quadruple-decker compounds show dependent nature on the rare earth ionic size. The shift toward higher energy direction in the frequencies of these vibrations along with the decrease of the rare earth radii reveals the effective and increasing π–π interactions in these quadruple-decker sandwich compounds in the same order. Nevertheless, the decreased sensitivity of the frequencies of the above mentioned vibration modes in particular the weak absorption band due to the isoindole stretching at 1414–1416 cm−1 for the quadruple-decker on rare earth metal size in comparison with corresponding band for bis(phthalocyaninato) rare earth counterparts indicates the relatively weaker π–π interaction in these quadruple-deckers than in the double-deckers.  相似文献   

5.
Zirconiumphthalocyanines: Synthesis and Properties of Chloride Ligated Phthalocyanines of Ter- and Quadrivalent Zirconium; Crystal Structure of cis-Di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2–)zirconate(IV)-di(dichloromethane) cis-Di(chloro)phthalocyaninato(2–)zirconium(IV) is obtained by the reaction of ZrCl4 with phthalodinitrile in 1-chloronaphthaline at 230°C. It reacts with molten di(triphenylphosphine)iminiumchloride ((PNP)Cl) yielding cis-di(triphenylphosphine)iminium-tri(chloro)phthalocyaninato(2-)zirconate(IV), cis-(PNP)[ZrCl3Pc2?]. This crystallizes with two molecules of dichloromethane in the monoclinic space group P21/n with the lattice constants a = 15.219(4) Å, b = 20.262(10) Å, c = 20.719(4) Å, b? = 93.46(2)°, Z = 4. The seven coordinated Zr atom is situated in a “square base-trigonal cap” polyhedron. The plane of the three chlorine atoms runs parallel to the plane of the four isoindole nitrogen atoms Niso. The Zr–Cl distances range from 2.49 to 2.55 Å, the Zr? Niso distances from 2.26 to 2.29 Å. Due to ion packing effects the Pc2? ligand shows an asymmetrical convex distortion. The PNP cation adopts the bent conformation. The P? N? P angle is 139°, the P? N distance 1.58 Å. As confirmed by the cyclovoltammograms cis-(PNP)[ZrCl3Pc2?] is oxidized (anodically or chemically by Cl2) to yield cis-tri(chloro)phthalocyaninato(1–)zirconium(IV) and reduced (cathodically or chemically by [BH4]?) yielding chlorophthalocyaninato(2–)zirconium(III) and cis-di(triphenylphosphine)iminium-di(chloro)phthalocyaninato(2–)zirconate(III). The optical spectra show the typical π–π*-transitions of the Pc2? resp. Pc? ligand not much affected by the different states of oxidation and coordination of zirconium. The same is true for the vibrational spectra of the Pc2? resp. Pc? ligand. In the f.i.r. spectra between 350 and 150 cm?1 the asym. and sym. Zr? Cl stretching and Cl? Zr? Cl deformation vibration as well as the asym. Zr? N stretching vibration of the [ZrClxN4] skeleton (x = 1–3) is assigned.  相似文献   

6.
Synthesis and Properties of Diphthalocyaninates of Bismuth, [Bi(Pc)2]k (k = 1?, 0, 1+); Crystal Structure of mixed-valent [Bi(Pc)2] · CH2Cl2 Blue di(phthalocyaninato(2-))bismuthate(III), [Bi(Pc2?)2]?, is obtained by the reaction of BiO(NO3) with molten 1,2-dicyanobenzene in the presence of potassium methylate and isolated as tetra-n-butylammonium (nBu4N)+ and bis(triphenylphosphine)iminium (PNP)+ salt. Green mixed-valent [Bi(Pc)2] · CH2Cl2 is prepared by anodic oxidation of [Bi(Pc2?)2]?. It crystallizes in the orthorhombic γ modification (Pnma; a = 28.176(5), b = 22.913(3), c = 7.925(1) Å, Z = 4). The BiIII ion is eightfold coordinated by the Niso atoms of the slightly distorted Pc ligands in a square antiprismatic manner. The average Bi? Niso bond distance is 2.467 Å. The complex is paramagnetic (μeff = 1.84 μB). Oxidation of [Bi(Pc2?)2]? with bromine yields purple, diamagnetic [Bi(Pc?)2]Brx (1.5 ≤ x ≤ 2.5). The redox properties are investigated electrochemically. UV-Vis-NIR, MIR/FIR and resonance Raman spectra of the new bismuth(III) complexes are discussed and compared with those of diphthalocyaninates of the lanthanides.  相似文献   

7.
High Spin Manganese(II) Phthalocyanines: Preparation and Spectroscopical Properties of Acidophthalocyaninatomanganate(II) Acidophthalocyaninatomanaganese(III) is reduced by boranate, thioacetate or hydrogensulfide to yield acidophthalo-cyaninatomanganate(II) ([Mn(X)Pc2?]?; X = Cl, Br, NCO, NCS) being isolated as tetra(n-butyl)ammonium salt. In the cyclovoltammogram of [Mn(NCO)Pc2?]? the halv-wave potential for the redoxcouple MnII/MnIII is at ?0.13 V, that of the first ring reduction at ?0.99 V. The magnetic moments are indicative of high-spin 6A1 ground states: μMn = 5.84 (NCO), 5.78(Cl), 5.65 (Br), 5.68 μB (NCS). A Curie-like temperature dependence of μMn is observed in the region 300–30 K. Below 30 K an increase in μMn occurs due to weak intermolecular ferromagnetic coupling. The ESR spectra confirm the S = 5/2 ground state with a strong g = 6 resonance observed (AMn = 80 G) as expected for an axially distorted ligand-field. Besides the typical π-π* transitions of the Pc2?-ligand several weak bands are observed in the Uv-vis-n.i.r. spectra at ca. 7.5, 9.1, 14.0 and 19.0 kK that are assigned to trip-multiplet transitions. In resonance with the band at 19.0 kK the Mn? X stretching vibration (v(MnX)) is resonance Raman enhanced: X = NCO: 319, Cl: 286, SCN: 238, Br: 202 cm?1. These vibrational frequencies are confirmed by the f.i.r. spectra. In the case of the thiocyanato-complex probably both forms of bonding of the ambident NCS-ligand are present (v(Mn? NCS): 274 cm?1). The frequencies of the vibrations of the inner (CN)8 ring are reduced by up to 20 cm?1 as compared with those of low spin MnII phthalocyanines.  相似文献   

8.
Recrystallization of the previously reported monosolvated bis(phthalocyaninato)niobium(IV), [Pc2Nb].CINP (CINP = 1-chloronaphthalene), has allowed isolation of a single crystal of a new solvated form, i.e. [Pc2Nb]. 3.5CINP, whose structure has been elucidated by X-ray work: space group P2(1)/n (No. 14); a = 16.765(3), b = 23.800(4), c = 19.421(4) A; alpha = gamma = 90 degrees, beta = 92.51(2) degrees; Z = 4. The sandwiched material is a "stapled" molecule, characterized by the presence of two intramolecular interligand C-C sigma bonds and highly strained phthalocyanine units, as formerly observed by crystallographic work for its Ti(IV) analogue, [Pc2Ti], and the +1 corresponding fragment, [Pc2Nb]+, present in the species [Pc2Nb](l3)(l2)0.5.3.5CINP. [Pc2Nb] appears to be reluctant to undergo further oxidation above the +1 oxidation state. Detailed theoretical studies by DFT and TDDFT methods have been developed on [Pc2Nb] and [Pc2Nb]+, also extended for comparison to the Ti(IV) complex [Pc2Ti], and an adequate picture of the ground-state electronic structure of these species has been achieved. Moreover, the excitation energies and oscillator strengths calculated for the closed-shell systems, [Pc2Ti] and [Pc2Nb]+, provide a satisfactory interpretation of their characteristic visible optical spectra and help to rationalize the similar features observed in the visible spectrum of the open-shell "stapled" complex, [Pc2Nb]. Thin solid films (100-250 nm) of [Pc2Nb] deposited on ITO (indium-doped tin oxide) show a reversible redox process in neutral or acidic aqueous electrolytes. The electrochemical and electrochromic properties of the sandwiched complex, combined with impedance and UV/visible spectral measurements, are presented and discussed. The achieved electrochemical information, while substantially in keeping with the observed chemical redox behavior and theoretical predictions, qualifies [Pc2Nb] as an "optically passive" electrode and a promising material for its use in electrochromic devices.  相似文献   

9.
Phthalocyanines of Cobalt and Rhodium with O, S, and Se Donor Ligands Di(phenolato)-, -(benzenethiolato)- and -(benzeneselenonato)phthalocyaninatocobaltate(III) and -rhodate(III) are prepared by the reaction of di(hydroxo)phthalocyaninatometalate with phenol resp. benzenethiol or benzeneselenol and isolated as poorly soluble tetra(n-butyl)ammonium salts of the formula (nBu4N)[M(EPh)2Pc2?] (M = Co, Rh; E = O, S, Se). In the Uv-vis spectra π–π* transitions in the Pc2?-typical B, Q, N and L regions are observed. For the Rh-complexes with E = S, Se there is a further band at 18.0 kK due to excitonic π(Ph)–π(Pc) interactions. The (E→Rh-charge-transfer(CT)) transition is observed for E = Se at 26.0 kK, being obscured by the Q, N region for E = O, S. The strong, broad (E → Co? CT) transition (E = O, S, Se) absorbs at ~20.5 kK. A second CT-transition is detected within the Q, N region for E = S, Se. Molecular vibrations (in cm?1) are examined by m.i.r., f.i.r, FT-Raman and dispersive resonance-Raman(RR) spectra. The C? E stretching mode (v7a) of the axial EPh ligands is observed for E = O at 1256/1262, 1269 (Co, m.i.r./RR), 1246/1265 (Rh), for E = S at 1085 (Co, Rh; RR) and for E = Se at 1069 (Co, Rh; RR). The C? C? E deformation mode (v6a) is assigned for E = O at 554/557 (Co, RR), 568 (Rh, RR) and for E = S at 420 (Co, Rh; RR). The following vibrational modes of the trans-ME2N4 skeleton are assigned: vs(ME) for Co: 381 (O)/271 (S)/139 (Se); for Rh: 408/297/156; vas(ME) for Co: 352/277/235; for Rh: 391/278/225; vas(MN) absorbs nearly independent of M and E at ~325 (f.i.r.) M? E? C deformation modes are observed between 246 and 200 (f.i.r.) resp. 217 and 186 (RR).  相似文献   

10.
Preparation and Spectroscopical Characterization of Di(acido)phthalocyaninatorhodates(III) Triethylendiaminorhodiumiodide reacts quickly and completely with boiling phthalodinitrile precipitating ?rhodiumphthalocyanine”?, which is purified and dissolved in alkaline media as di(hydroxo)phthalocyaninatorhodate(III). Acidification in the presence of halides or pseudohalides yields less soluble acidophthalocyaninatorhodium reacting with tetra-n-butyl-ammonium(pseudo)halide to give (blue)green tetra-n-butyl-ammoniumdi(acido)phthalocyaninatorhodate(III), (nBu4N)[Rh(X)2Pc2?] (X = Cl, Br, I, N3, CN, NCO, SCN, SeCN). The asym. Rh? X-stretching vibration (vas(RhX)) is observed in the f.i.r. at 290 (X = Cl), 233 (Br), 205 (I), 366 (N3), 347 (CN), 351 (NCO), 257 (SCN) and 214 cm?1 (SeCN). vs(RhI) is the only sym. Rh? X-stretching vibration excited at 131 cm?1 in the Raman spectrum. The m.i.r. and resonance Raman spectra are typical for hexacoordinated phthalocyaninatometalates(III). The influence of the axial ligands is very small. The frequency of the stretching vibrations of the pseudohalo-ligands are as expected (in the case of the ambident ligands the bonding atom is named first): vas(NN) at 2006 and vs(NN) at 1270 cm?1 (N3); vas(CN) at 2126 (CN), 2153 (NCO), 2110 (SCN) and 2116 cm?1 (SeCN). The characteristic π–π*-transitions of the Pc2?-ligand dominate the UV-vis spectra. The splitting of the Q and N region is discussed and the weak absorbance at ca. 22 kK is assigned to a n–π*-transition.  相似文献   

11.
Blue, paramagnetic bis(phthalocyaninato(2–)rhenium(II)) (μeff = 0,88 μB, per Re, at 300 K) is prepared by thermal decomposition of trans-bis(triphenylphosphine)phthalocyaninato(2–)rhenium(II), in boiling triphenylphosphine. It crystallizes in the triclinic space group P 1 with cell parameters as follows: a = 7.799(3) Å, b = 12.563(7) Å, c = 12.69(1) Å, α = 89.97(5)°, β = 94.14(5)°, γ = 106.39(4)°; Z = 1. Two cofacial phthalocyaninates are bonded together by a Re–Re bond with a Re–Re distance of 2.285(2) Å. The Re atoms are located distinctly outside the centre of the (Niso)4 planes by 0.426(3) Å. The Re–Niso distance varies from 1.99(1) to 2.04(1) Å (average 2.02 Å). The pc2– ligands are in an eclipsed conformation and concavely distorted. In the UV-VIS-NIR spectrum the B region is split into two bands of comparable intensity due to strong excitonic coupling. The Re–Re stretching vibration at 240 cm–1 is selectively enhanced in the resonance Raman spectrum (λexc = 488 nm).  相似文献   

12.
Bis(triphenylphosphine)iminium Bis(methoxo)phthalocyaninato(2–)ferrate(III) – Synthesis and Crystal Structure Chlorophthalocyaninato(2–)ferrate(III) reacts with bis(triphenylphosphine)iminium hydroxide in methanol/acetone solution to yield blue crystals of bis(triphenylphosphine)iminium bis(methoxo)phthalocyaninato(2–)ferrate(III). The complex salt crystallizes as an acetone/methanol solvate (bPNP)[Fe(OCH3)2pc2–] · (CH3)2CO · 1.5 CH3OH in the triclinic space group P 1 (no. 2) with the cell parameters a = 13.160(5) Å, b = 15.480(5) Å, c = 17.140(5) Å, α = 97.54(5)°, β = 91.79(5)°, γ = 95.44(5)°. The Fe atom is located in the centre of the pc2– ligand coordinating four isoindole N atoms (Niso) of the pc2– ligand and two O atoms of the methoxo ligands in a mutual trans arrangement. The average Fe–O and Fe–Niso distances are 1.887 and 1.943 Å, respectively. The cation adopts the bent conformation (< P–N–P = 140.4(2)°) with P–N distances of 1.579(3) and 1.575(3) Å.  相似文献   

13.
Density functional theory (DFT) calculations were carried out to describe the molecular structures, molecular orbitals, atomic charges, UV-vis absorption spectra, IR, and Raman spectra of bis(phthalocyaninato) rare earth(III) complexes M(Pc)(2) (M = Y, La) as well as their reduced products [M(Pc)(2)](-) (M = Y, La). Good consistency was found between the calculated results and experimental data. Reduction of the neutral M(Pc)(2) to [M(Pc)(2)]- induces the reorganization of their orbitals and charge distribution and decreases the inter-ring interaction. With the increase of ionic size from Y to La, the inter-ring distance of both the neutral and reduced double-decker complexes M(Pc)(2) and [M(Pc)(2)](-) (M = Y, La) increases, the inter-ring interaction and splitting of the Q bands decrease, and corresponding bands in the IR and Raman spectra show a red shift. The orbital energy level and orbital nature of the frontier orbitals are also described and explained in terms of atomic character. The present work, representing the first systemic DFT study on the bis(phthalocyaninato) yttrium and lanthanum complexes sheds further light on clearly understanding structure and spectroscopic properties of bis(phthalocyaninato) rare earth complexes.  相似文献   

14.
Two new cerium(IV) phosphates were obtained: cerium(IV) hydroxidophosphate, Ce(OH)PO4, and cerium(IV) oxidophosphate, Ce2O(PO4)2, which were shown to complement the classes of isostructural compounds M(OH)PO4 and R2O(PO4)2, where M=Th, U and R=Th, U, Np, Zr. Ce2O(PO4)2 oxidophosphate is formed by elimination of H2O from the crystal structure of Ce(OH)PO4 during its thermal decomposition. The structures of Ce(OH)PO4 and Ce2O(PO4)2 are related to each other with the same Cmce space group and similar unit cell parameters (a=6.9691(3) Å, b=9.0655(4) Å, c=12.2214(4) Å, V=772.13(8) Å3, Z=8; a=7.0220(4) Å, b=8.9894(5) Å, c=12.544(1) Å, V=791.8(1) Å3, Z=4, respectively).  相似文献   

15.
Syntheses, Spectroscopical Properties, and Crystal Structures of Binuclear Homo- and Heteroleptic μ-Carbido Complexes of Iron(IV) with Phthalocyaninate and Tetraphenylporphyrinate ligands μ-Carbidophthalocyaninato(2–)iron(IV)tetraphenylporphyrinato(2–)iron(IV) ( 2 ) and μ-carbido-bis(tetraphenylporphyrinato(2–)iron(IV)) ( 1 ) are synthesized by the reaction of phthalocyaninato(2–)ferrate(I) with dichlorcarbenetetraphenylporphyrinato(2–)iron(II). 1 and 2 as well as μ-carbido-bis(phthalocyaninato(2–)iron(IV)) ( 3 ) are soluble in tetrahydrofuran, but only 2 and 3 form solvent adducts 2 a and 3 a by coordination of thf to each of the iron atoms in trans position to the bridging C atom. The crystal structures of the solvates 1 · thf, 2 a · thf and 3 a · thf, crystallizing from the thf solutions, are determined: 1 · thf, orthorhombic, Fddd, a = 21.966(3) Å, b = 22.300(1) Å, c = 31.220(3) Å, Z = 8; 2 a · thf, orthorhombic, P22121, a = 14.487(3) Å, b = 20.753(5) Å, c = 25.803(7) Å, Z = 4; 3 a · thf, orthorhombic, P212121, a = 12.642(1) Å, b = 22.361(7) Å, c = 23.629(3) Å, Z = 4. In all three double-decker complexes both ”︁tetrapyrrol”︁”︁ ligands are held together by a linear Fe–C–Fe bridge in a staggered ( 1 · thf, 3 a · thf) or ecliptic conformation ( 2 a · thf). The Fe–C distances vary between 1.71 and 1.64 Å (average: 1.68 Å). In 2 a · thf and 3 a · thf the iron atoms are nearly in the centre (Ct) of the (Np)4 planes (d(Fe–Ct) ∼ 0.1 Å), but in 1 · thf these atoms are directed by 0.27 Å towards the bridging C atom. The macrocyclic ligands of 1 · thf are severely concavely, those of 2 a · thf and 3 a · thf slightly distorted. The electronic absorption spectra and vibrational spectra are discussed.  相似文献   

16.
A novel series of double‐decker lanthanide(III) bis(phthalocyaninato)–C60 dyads [LnIII(Pc)(Pc′)]–C60 (M=Sm, Eu, Lu; Pc=phthalocyanine) ( 1 a – c ) have been synthesized from unsymmetrically functionalized heteroleptic sandwich complexes [LnIII(Pc)(Pc′)] (Ln=Sm, Eu, Lu) 3 a – c and fulleropyrrolidine carboxylic acid 2 . The sandwich complexes 3 a – c were obtained by means of a stepwise procedure from unsymmetrically substituted free‐base phthalocyanine 5 , which was first transformed into the monophthalocyaninato intermediate [LnIII(acac)(Pc)] and further reacted with 1,2‐dicyanobenzene in the presence of 1,8‐diazabicyclo[5.4.0]undec‐7‐ene (DBU). 1H NMR spectra of the bis(phthalocyaninato) complexes 3 a – c and dyads 1 a – c were obtained by adding hydrazine hydrate to solutions of the complexes in [D7]DMF, a treatment that converts the free radical double‐deckers into the protonated species, that is, [LnIII(Pc)(Pc′)H] and [LnIII(Pc)(Pc′)H]–C60. The electronic absorption spectra of 3 a – c and 1 a – c in THF exhibit typical transitions of free‐radical sandwich complexes. In the case of dyads 1 a – c , the spectra display the absorption bands of both constituents, but no evidence of ground‐state interactions could be appreciated. When the UV/Vis spectra of 3 a – c and 1 a – c were recorded in DMF, typical features of the reduced forms were observed. Cyclic voltammetry studies for 3 a – c and 1 a – c were performed in THF. The electrochemical behavior of dyads 1 a – c is almost the exact sum of the behavior of the components, namely the double‐decker [LnIII(Pc)(Pc′)] and the C60 fullerene, thus confirming the lack of ground‐state interactions between the electroactive units. Photophysical studies on dyads 1 a – c indicate that only after irradiation at 387 nm, which excites both C60 and [LnIII(Pc)(Pc′)] components, a photoinduced electron transfer from the [LnIII(Pc)(Pc′)] to C60 occurs.  相似文献   

17.
Magnesium Phthalocyanines: Synthesis and Properties of Halophthalocyaninatomagnesate, [Mg(X)Pc2?]? (X = F, Cl, Br); Crystal Structure of Bis(triphenylphosphine)iminiumchloro-(phthalocyaninato)magnesate Acetone Solvate Magnesium phthalocyanine reacts with excess tetra(n-butyl)ammonium- or bis(triphenylphosphine)iminiumhalide ((nBu4N)X or (PNP)X; X = F, Cl, Br) yielding halophthalocyaninatomagnesate ([Mg(X)Pc2?]?; X = F, Cl, Br), which crystallizes in part as a scarcely soluble (nBu4N) or (PNP) complex-salt. Single-crystal X-ray diffraction analysis of b(PNP)[Mg(Cl)Pc2?] · CH3COCH3 reveals that the Mg atom has a tetragonal pyramidal coordination geometry with the Mg atom displaced out of the center (Ct) of the inner nitrogen atoms (Niso) of the nonplanar Pc ligand toward the Cl atom (d(Mg? Ct) = 0.572(3) Å; d(Mg? Cl) = 2.367(2) Å). The average Mg? Niso distance is 2.058 Å. Pairs of partially overlapping anions are present. The cation adopts a bent conformation (b(PNP)+: d(P1? N(K)) = 1.568(3) Å; d(P2? N(K)) = 1.587(3) Å; ?(P1? N(K)? P2) = 141.3(2)°). Electrochemical and spectroscopic properties are discussed.  相似文献   

18.
The synthesis and characterisation of the first neutral cerium dialkyl dithiocarbamate complexes, using a novel oxidative displacement of the amido ligands of [Ce[N(SiMe3)2]3] by tetraalkylthiuram disulfides [R2NC(S)S]2(R = Me, Et) in thf solution, are reported. In the absence of other donors, the complexes [Ce(kappa2-S2CNMe2)3(thf)2] and Ce(kappa2-S2CNEt2)3) 3 were obtained. The addition of a polypyridyl ligand allowed easy access to a range of complexes of general formula [Ce(kappa2-S2CNR2)3(L[intersection]L)][R = Me and L([intersection])L = 2,2'-bipy (4), or 4,7-diphenyl-1,10-phenanthroline (6); or R = Et and L[intersection]L = 2,2'-bipy (5)]. Brief exposure of the Ce(III) dithiocarbamate to oxygen gas afforded in high yield the diamagnetic, crystalline Ce(IV) dithiocarbamate [Ce(kappa2-S2CNEt2)4)] 7. The neodymium (8) and terbium (10) complexes, isoleptic with 2, were prepared from the appropriate 4f metal (Ln) bis(trimethylsilyl)amide [Ln[pN(SiMe3)2]3][Ln = Nd or Tb (9)] and [Me2NC(S)S]2. The structures of the crystalline complexes, 2, 4, 6, 7, 9 and 10 have been determined by X-ray crystallography. Some evidence has been obtained for the formation of the cerium(IV) complex Ce[N(SiMe3)2]2(kappa2-S2CNMe2)2. The cerium(IV) complex 7 has the metal coordinated to eight sulfur atoms of four planar chelating S2CNC2 moities and its geometry is intermediate between dodecahedral and square prismatic; the mean Ce-S bond length of 2.803 A in 7 compares with the 2.950 A in the Ce(III) complex 2.  相似文献   

19.
Bis(bis(triphenylphosphine)iminium) μ-Nitrido-bis(azidophthalocyaninato(2–)ferrate(IV)) Triiodide Diethylether Di-Solvate: Synthesis, Properties, and Crystal Structure Bis(bis(triphenylphosphine)iminium) μ-nitrido-bis(azidophthalocyaninato(2–)ferrate(IV)) triiodide is prepared as a diethylether di-solvate by substitution of μ-nitrido-bis(pyridinephthalocyaninato(2–)iron(IV)) pentaiodide with bis(triphenylphosphine)iminium azide in acetone and precipitation by slow diffusion of diethylether. The doublesalt crystallizes monoclinically in the space group C12/c1 with cell parameters: a = 34.567(9) Å, b = 20.237(9) Å, c = 21.251(5) Å, β = 119.79(2)°; Z = 4. The Fe atoms are located almost in the centre (Ct) of the (Niso)4 planes (d(Fe–Ct) = 0.080(1) Å; Niso: isoindoline N atom). The average Fe–Niso distance is 1.947(5) Å, the Fe-(μ-N) distance 1.650(1) Å. The Fe-(μ-N)–Fe skeleton is linear (177.4(4)°). Both waving pc2– ligands are in a staggered conformation (skew angle φ = 38.5(5)°). Fe coordinates linear azide (d(Fe–Nazide) = 2.152(7) Å) with an angle of 121.2(6)°. The isolated triiodide ion is almost linear (d(I–I) = 2.936(2) Å). The PNP cation obtains an hybrid conformation (∠(P–N–P) = 157.4(2)°). The asymmetrical Fe-(μ-N)–Fe stretching vibration is observed in the IR spectrum at 997 cm–1, the symmetrical one is selectively enhanced in the resonance Raman (RR) spectrum at 478 cm–1. The corresponding I–I stretching vibrations of the triiodide ion are present in the actual spectra at 134 (IR) and 115 cm–1 (RR). An IR band at 334 cm–1 is attributed to the asymmetrical Fe–Nazide stretching vibration.  相似文献   

20.
Substitution of only one bridged hydrogen atom of bis(1,2-cycloheptanedionedioximato)nickel(II) by the diphenylboron group is easily accomplished with formation of1. Both hydroxy groups of bis(dihydroxyboron-diaminoglyoximato)nickel(II) chelate2 can be esterified by phenol or methanol (chelates2 a andb). The bis(diphenylboron) chelate3 a results from the reaction of bis(dihydroxyborondiaminoglyoximato)nickel(II) with diphenylboric anhydride. In the same way the corresponding chelates3 b-f are obtainable from the boron-free nickel chelates. The i.r. and u.v. spectra as well as the diamagnetic character of the compounds described are in agreement with planar structures.
IV. Mitt.:E. Hohaus, Mh. Chem., im Druck.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号