首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The starting point is our previous study of influence of the internal molecular mean field of dipole‐dipole interactions on local orientation and phase transitions in polymer liquid crystal (PLC) systems of longitudinal chains.[1, 2] Electric dipoles are created by LC mesogen moieties. The longitudinal PLC is a macromolecule of consecutively copolymerized LC and flexible polymer sequences. We now amplify the model by inclusion of dipole‐external electric field interactions. We find that the external fields can seriously modify the local orientational order of the system and affect phase transition parameters dependent on that order. In particular, the external fields induce the formation of disoriented nematic phases with negative values of the second order orientation parameter 〈P2〉 for LC sequences in the longitudinal PLCs while the first order parameter 〈P1〉 is positive. However, some rapid decreases in 〈P1〉 are observed at points of positive‐to‐negative transitions of 〈P2〉; thus the LC disorientation manifests itself. The limiting case of the monomer liquid crystal (MLC) systems is included also.  相似文献   

2.
The second-order nonlinear optical susceptibilities βijk,βμ and third-order non-linear optical susceptibilities γijkl,<γ> of a series of the novel push-pull multi-ring electro-photo polymer intermediates have been calculated.The influences of molecular structure,donor,acceptor and the frequency of external field on P and v,and the relationship between V and the number of thiophene rings(i.e.conjugated chain length)have been studied using UNDO/SCI methods combined with sum-overstate(SOS)formula.The calculated results show that γ is proportional to 2.69 power of the chain length of the conjugated molecular bonds when the length is not quite long.  相似文献   

3.
ZnO nanorod polymer hybrids (i.e., ZnO nanorods coated with a block copolymer with a short anchor block (dopamine) and a longer solubilizing block of polystyrene (PS)) form liquid crystalline (LC) phases if they are dispersed at high concentration e.g., in a PS oligomer matrix. Due to the high mobility of the low Tg‐matrix the nanorod polymer hybrids show a switching behavior under an applied AC electric field. Hence, the orientation of the nanorod mesogens can be changed from planar (parallel to the substrate) to homeotropic (perpendicular) in full analogy to the switching of low molecular liquid crystals in an electric field. Dielectric measurements show that such a switching is mainly due to the cooperative LC behavior, because the rods themselves exhibit only a very small effective dipole moment. The process can be investigated by polarizing microscopy. SEM images show the orientations of the individual nanorods, which correspond to the Fredericks transition well known for liquid crystals aligned in an electric field. This was the first time such a transition could be visualized by electron microscopy due to the large nanorod mesogens. The observation is interesting to orient nanorods perpendicular to an electrode and can help to improve optoelectronic devices.

  相似文献   


4.
Electric‐field‐induced molecular alignments of side‐chain liquid‐crystalline polyacetylenes [? {HC?C[(CH2)mOCO‐biph‐OC7H15]}? , where biph is 4,4′‐biphenylyl and m is 3 (PA3EO7) or 9 (PA9EO7)] were studied with X‐ray diffraction and polarized optical microscopy. An orientation as high as 0.84 was obtained for PA9EO7. Furthermore, the molecular orientation of PA9EO7 was achieved within a temperature range between the isotropic‐to‐smectic A transition temperature and 115 °C, and this suggested that the orientational packing was affected by the thermal fluctuation of the isotropic liquid and the mobility of the mesogenic moieties. The maximum achievable orientation for PA9EO7 was much greater than that for PA3EO7. This was the first time that the electric‐field‐induced molecular orientation of a side‐chain liquid‐crystalline polymer with a stiff backbone was studied. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1333–1341, 2004  相似文献   

5.
The statistical conformations of a length of polymer chain, such as DNA, trapped in a void within a gel under the influence of an external electric field, have been studied by the method of Green's functions. Based upon a rectangular box approximation for the void shape, the method gives an explicit analytical expression for the end-to-end distance (Rx) as a function of applied field strength, number of chain segments coiled within the void, and size of a chain segment. Results of calculations show that the field compresses the entrained coil into more compact configurations, as would be expected. Such compression is believed to affect the electrophoretic mobility of a long chain molecule like DNA in a dilute gel. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
We have used combinations of light, heat, and electrostatic fields to investigate the orientation of nonlinear azo-chromophores chemically incorporated into high glass transition temperature (Tg) polyimides. A number of nonlinear optical polyimides have been synthesized in which the interaction between the nonlinear optical chromophore and the polymer main chain was systematically altered to determine to what extent this steric interaction influences the orientation of the nonlinear chromophore. Chromophores in polymers may be oriented by a number of methods: (a) polarized light at room temperature (i.e., photo-induced orientation or PIO), (b) polarized light and electric fields (i.e., photo-assisted poling or PAP) at temperatures ranging from room temperature to the polymer Tg, and (c) electric fields at Tg (thermal poling). While thermal poling and PIO are usually possible, PAP depends strongly on the molecular structure of the polymer. Previously we have shown that PIO can be accomplished at room temperature in a system where the nonlinear chromophore is embedded into the polyimide main chain via the donor substituent, and this orientation can only be thermally erased at temperatures approaching Tg. In this article we show that, whereas photoisomerization can efficiently depole donor-embedded polyimides in a matter of few minutes at room temperature, PAP does not induce any polar order. This behavior is in marked contrast to a structurally related, side-chain, nonlinear polyimide, in which the azo chromophore is tethered via a flexible linkage to the polymer backbone. In this case some PAP occurs even at room temperature, while no PAP is observed for a donor-embedded system with a similar Tg. We suggest that the orientation during PAP below Tg in the side-chain polyimide is primarily due to the movement of the azo side chains, and there is a very little coupling of this motion to the main chain. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1669–1677, 1998  相似文献   

7.
The molecular orientation distribution of poly(p‐dioxanone) (PPDX) uniaxially oriented commercial fibers was determined by polarized Raman spectroscopy and X‐ray diffraction. The order parameters 〈P200〉 and 〈P400〉 of the orientation distribution function were determined by polarized Raman spectroscopy. For the C?O stretching band, the values of 〈P200〉 and 〈P400〉 obtained are equal to ?0.40 ± 0.04 and 0.28 ± 0.04, respectively. These results clearly indicate that the carbonyl groups are highly oriented perpendicular to the fiber axis. X‐ray diffraction led to a fiber repeat value of 0.628 nm for these samples, and to 〈P200〉 and 〈P400〉 values of 0.93 and 0.82, respectively, for the c‐axis orientation, indicating a high orientation in the draw direction of the fibers. A Monte‐Carlo conformational search led to 20 low‐energy conformations, but only one of these was found compatible with both the fiber repeat and the angle between the C?O bond and the fiber axis. This conformation, a 21 helix with a tg?ttg? succession of torsion angles, is proposed as the existing conformation in the crystalline state. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 406–417, 2008  相似文献   

8.
A linear polymer chain in good solvent condition with one end grafted on a infinitely large, impenetrable flat surface is investigated using dynamic Monte Carlo simulation on a simple cubic lattice. Chain shape and dimension, angular correlation between the direction of the end‐to‐end vector and that of the longest principal axis of inertia are studied and discussed. Results reveal that the asphericity of end‐grafted polymer chains is greater than that of free ones, the limit ratio 〈L12〉 : 〈L22〉 : 〈L32〉 is about 1 : 3.0 : 14.9. The limit of mean angle 〈θ〉 of end‐grafted chains is about 22°, smaller than that of free chains, indicating angular correlation between the direction of the end‐to‐end vector and that of the longest principal axis is reinforced.  相似文献   

9.
A wide-angle x-ray diffraction (WAXD) study of the development of molecular orientation in the crystalline phase of ultra-high–molecular weight polyethylene films prepared by the gelation–crystallization method is presented. WAXD scans of the undrawn films show that the lamellae are oriented in the plane of the films. Upon drawing at 130°C, the orientation of the molecular chains changes from the direction normal to the film surface (ND) to the elongation direction. The decrease of the 200/020 intensity ratio at low draw ration (λ <10) indicates that double orientation develops during the transformation from the lamellar to the fibrillar morphology, with the a-axis oriented parallel to ND. The orientation distributions of the 110, 200, 020, and 002 planes of the orthorhombic unit cell of polyethylene were studied and characterized by the coefficients of a Legendre polynomial series. At a draw ratio of 4.5, the second-order coefficient, 〈P2(cos χ〉, already gets close to its limiting value, but it is shown that higher order coefficients of the polynomial series can be used to describe the evolution of the orentation, even up to λ = 50. The coefficients relative to the molecular chain orientation, 〈Pn(cos χ)〉c, can be calculated from different crystalline reflections. Curve-fitting calculations were made in order to improve the correlation between the results obtained from the orientation distribution of the 110, 020, and 002 planes. A Person VII function was found to give a better fit of the experimental curves than Gaussian or Lorentzian equations. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Elastic behaviors of uniform star polymer chains with two to seven branches (namely, functionality f = 2-7) are investigated using Monte Carlo simulation and the bond fluctuation model. Here chain dimensions and thermodynamic properties of uniform star polymer chains during the process of tensile elongation are studied, and comparisons with linear chain are also made. Static properties of chains such as chain sizes and asphericities of chains are calculated, and g-value of g = 〈S2star/〈S2linear decreases with elongation ratio increasing for different functionality f. Thermodynamic properties such as average energy 〈U〉, free energy per bond 〈A′〉 and elastic force F are also investigated during the process of tensile elongation. In the meantime, scatting functions P(q) are calculated for star polymer chains with different functionality f. Additionally, we also discuss the influence of elongation ratio on scattering form factor. The impenetrability of the star cores is known to cause a discontinuity in the osmotic pressure showed through a peak in the scattering functions, and some different behaviors in the tensile process for uniform star chain are obtained.  相似文献   

11.
Two model polymers, containing fluorene as an electron‐donating moiety and benzothiadiazole (BT) as an electron‐accepting moiety, have been synthesized by Suzuki coupling reaction. Both polymers are composed of the same chemical composition, but the BT acceptor can be either at a side‐chain (i.e., S‐polymer) or along the polymer main chain (i.e., M‐polymer). Their optical, electrochemical, and photovoltaic properties, together with the field‐effect transistor (FET) characteristics, have been investigated experimentally and theoretically. The FET carrier mobilities were estimated to be 5.20 × 10?5 and 3.12 × 10?4 cm2 V?1 s?1 for the S‐polymer and M‐polymer, respectively. Furthermore, polymeric solar cells (PSCs) with the ITO/PEDOT:PSS/S‐polymer or M‐polymer:PC71BM(1:4)/Al structure were constructed and demonstrated to show a power conversion efficiency of 0.82 and 1.24% for the S‐polymer and M‐polymer, respectively. The observed superior device performances for the M‐polymer in both FET and PSCs are attributable to its relatively low band‐gap and close molecular packing for efficient solar light harvesting and charge transport. This study provides important insights into the design of ideal structure–property relationships for conjugate polymers in FETs and PSCs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
We have been developing a physical picture on the atomic level of stress relaxation in polymer melts by means of computer simulation of the process in model systems. In this article we treat a melt of freely jointed chains, each with N = 200 bonds and with excluded-volume interactions between all nonbonded atoms, that has been subjected to an initial constant-volume uniaxial extension. We consider both the stress relaxation history σ(t) based on atomic interactions, and the stress history σe(t; NR) based on subdividing the chain into segments with NR bonds each, with each segment regarded as an entropic spring. It is found that at early times σ(t) > σe(t; NR) for all NR, and that, for the remainder of the simulation, there is no value of NR for which σ(t) = σe(t; NR) for an extended period; by the end of the simulation σ(t) has fallen just below the value σe(t; 50). The decay of segment orientation, 〈P2(t; NR)〉, and of bond orientation 〈P2(t; 1)〉, is computed during the simulation. It is found that the decay of the atom-based stress σ(t) is closely related to that of 〈P2(t; 1)〉. This result may be understood through the concept of steric shielding. The change in local structure of the polymer melt during relaxation is also studied. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 143–154, 1998  相似文献   

13.
Chain‐length‐dependent termination rate coefficients of the bulk free‐radical polymerization of styrene at 80 °C are determined by combining online polymerization rate measurements (DSC) with living RAFT polymerizations. Full kt versus chain‐length plots were obtained indicating a high kt value for short chains (2 × 109 L · mol−1 · s−1) and a weak chain‐length dependence between 10 and 100 monomer units, quantified by an exponent of −0.14 in the corresponding power law 〈kti,i〉 = kt0 · P−b.

Double logarithmic plots of 〈kti,i〉 versus P, evaluated from experimental time‐resolved Rp data according to the procedure described in the text, for different CPDA and AIBN concentrations. The best linear fit for (10 < P < 100) is indicated as full line.  相似文献   


14.
A small Janus molecular dimer, as external electric field (Fz) manipulated both a molecular clam switch and a novel electric information storage unit, is found by quantum chemical computations for the first time. The molecular clam switching is intriguing and reversible. A critical Fz value of 95 × 10−4 au causes a dramatically open change in conformation from Closed form to Open form. And a small reversed electric field of Fz = −10 × 10−4 au performs a close change from Open form to Closed form. In the switching process, owing to the existence of a great electric dipole moment (μ) contrast between 0 and 22.13 D, the molecular clam switch may serve as an electric information storage unit. Gratifyingly, the reading, writing, and erasing of binary information on the electric information storage unit are easy. And further calculations show that Janus graphene fragment dimer can also serve as a molecular clam switch. Thus, this work proposes a new molecular switch prototype in the invention of artificial molecular machines, and a novel electric information storage unit in the field of molecular electronics.  相似文献   

15.
16.
The influence of excluded volume on the conformational property of linear tail-like chain with one end attached to a flat surface is investigated by means of dynamic Monte Carlo method. Conformational properties such as mean-square end-to-end distance 〈R2〉, mean-square radius of gyration 〈S2〉 and mean asphericity parameter 〈A〉 are calculated for random walking (RW) and self-avoiding walking (SAW) tail-like chains on the simple cubic lattice. We find that the EV has nearly the same effect on 〈R2〉 as on 〈S2〉: (1) 〈R2SAW/〈R2RW≈〈S2SAW/〈S2RWn0.204±0.05, where n is the chain length, and (2) the limiting value of 〈R2〉/〈S2〉≈7.7 for both chains. The distribution P(R) of the SAW tail-like chain can be expressed as a R4 correction of that of the RW one. We find that the value 〈A〉 of the SAW tail-like chain is bigger than that of the RW tail-like chain for all chain lengths, and the limiting values are 0.446±0.006 and 0.403±0.005 respectively.  相似文献   

17.
Pandey  R. B.  Seyfarth  Ray 《Structural chemistry》2003,14(5):445-449
Monte Carlo simulations are performed to study the conformational relaxation of a large polymer chain driven into a heterogeneous (membranelike) substrate on a discrete lattice. Chains are created on trails of constrained self-avoiding walks (SAW) on the lattice. Kink–jump, crank–shaft, and reptation moves are used to move segments of chains. Short chains of length L sc are driven by a field E 1 toward an impenetrable substrate to design a membrane medium with mobile chain segments. A long chain of length L lc is then driven by a field E 2 into the membrane medium and is subsequently allowed to relax in a field E 3. Radius of gyration R g and end-to-end distance R e of the long chain are examined. The relaxation of the conformation of the long chain and its magnitude is found to depend on the initial (predeposition) conformation of the chain, i.e., on E 2. For a relatively relaxed initial conformation (at E 2 = 0.1), the longitudinal component of the radius of gyration (R gz ) is found to decay with the driving field E 3 with a power law, R gz E 3 where 0.1 at low field (E 3 0.1) and 1/3 at high field E 3 0.1.  相似文献   

18.
This review is focused on the use of ionomers in shape memory polymers. Ionomers are polymers that contain less than ∼15% ionic groups. The incompatibility between the ion-pairs and the polymer backbone drives microphase separation producing dispersed ionic aggregates, which can physically crosslink the polymer. Shape memory polymers are responsive materials that can be deformed to program a temporary shape and then recovered on application of an external stimulus. Through the review of the main types of ionomers used in shape memory polymers, polyurethanes and polyester ionomers, polyolefin and polyaromatic ionomers, and perfluorosulfonic acid ionomers (i.e., Nafion®) it will be shown that ionomers can produce robust thermoplastic shape memory polymers and in many cases impart unique properties which allow advanced shape memory materials to be obtained including antibacterial, high temperature, and multishape memory polymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1389–1396  相似文献   

19.
The different dynamics of polymer segments forming phase-separated globular structures in aqueous (D2O) solutions affects both the shape of NMR spectra and NMR relaxation times of polymer and solvent. Two types of the approach are discussed. The first one is based on the reduction of integrated intensities of polymer NMR lines in high-resolution NMR spectra in the system undergoing the coil-globule phase transition. The fraction p of phase-separated units (units with significantly reduced mobility) and subsequently, e.g., thermodynamic parameters ΔH and ΔS characterizing the coil-globule phase transition can be determined. The second approach is based on measurements of 1H NMR relaxation times of water (HDO) which provide information on behaviour of water during phase transition. The power of both approaches is demonstrated on results obtained with solutions of several thermoresponsive homopolymers and copolymers.  相似文献   

20.
The intensity of the Raman scattering from uniaxially oriented amorphous poly(ethylene terephthalate) tapes at wave number shifts of 1732, 1616, 1286, 857, and 632 cm?1 has been observed for various combinations of incident and scattered light polarization vectors with respect to the draw direction. An attempt has been made to analyze the data to provide values of 〈P2(ζ)〉 and 〈P4(ζ)〉, where Pn(ζ) is the nth order Legendre polynomial in ζ,ζ is the cosine of the angle between the draw direction and a typtical chain axis in the polymer, and the angle brackets denote the average value over all repeat units. This attempt was successful for the 1616 and 632 cm?1 lines but less successful for the other three, although the data for the 1732 and 1286 cm?1 lines could be analyzed to provide quantities proportional, but not equal, to 〈P2(ζ)〉. In the analysis and discussion two possible models were considered for the conformation of the terephthaloyl residues in the amorphous polymer but it was not possible to reject either model conclusively. The results suggest, in agreement with previous studies by other methods, that the drawing of PET at 80°C takes place essentially as the extension of a rubberlike network which is frozen on subsequent cooling to room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号