首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
α,ω-Dihydroxyl polystyrene was synthesized by the addition of styrene oxide to polystyryl dianion initiated with sodium naphthalene. Diglyme was found to be an unsuitable solvent for the preparation of low molecular weight compounds. Block copolymerization of the α,ω-dihydroxyl polystyrenes (M?n = 2250, 3140, and 6200) with poly(ethylene glycols) (M?n = 404, 1960, and 5650) was pursued by introducing urethane linkages with 4,4′-diphenylmethane diisocyanate. The mechanical, thermal, and viscoelastic properties, solution viscosity, molecular weight distribution, and moisture absorption of the block copolymers obtained were examined. Incorporation of styrene blocks was found to disturb the crystallization and fusion of poly(ethylene glycol) blocks. Films cast from benzene solution were soft and elastic and absorbed up to 5.8% moisture.  相似文献   

2.
Steady flow and dynamic viscosities were determined for symmetrical linear and starbranched block copolymers of butadiene and styrene above their upper (polystyrene) glass transition. Block structures examined were B-S-B, (B-S-)3, S-B-S, (S-B-)3 and (S-B-)4. At constant molecular weight and total styrene content viscosities were greater for polymers terminating in styrene blocks, irrespective of branching. Branching decreased the viscosity of either polybutadiene-terminated or polystyrene-terminated block polymers, compared at equal M w. However, comparisons at equal block lengths showed that the length of the terminal blocks, not the total molecular weight, governs the viscoelastic behavior of these polymers to a surprisingly good approximation. This unusual result is rationalized in terms of the two-phase domain structure of these polymers, which persists to a significant degree in the melt. Below the glass transition of the polystyrene blocks the effects of branching were masked by differences in the morphology of the domain structure unrelated to branching.  相似文献   

3.
Molecular motions of hydrophobic–hydrophilic water-soluble block copolymers in solution were investigated by high-resolution proton magnetic resonance (NMR). Samples studied include block copolymers of polystyrene–poly(ethylene oxide), polybutadiene–poly(ethylene oxide), and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide). NMR measurements were carried out varying molecular weight, temperature, and solvent composition. For AB copolymers of polystyrene and poly(ethylene oxide), two peaks caused by the phenyl protons of low-molecular-weight (M?n = 3,300) copolymer were clearly resolved in D2O at 100°C, but the phenyl proton peaks of high-molecular-weight (M?n = 13,500 and 36,000) copolymers were too broad to observe in the same solvent, even at 100°C. It is concluded that polystyrene blocks are more mobile in low-molecular-weight copolymer in water than in high-molecular-weight copolymer in the same solvent because the molecular weight of the polystyrene block of the low-molecular-weight copolymer is itself small. In the mixed solvent D2O and deuterated tetrahydrofuran (THF-d8), two peaks caused by the phenyl protons of the high-molecular-weight (M?n = 36,000) copolymer were clearly resolved at 67°C. It is thought that the molecular motions of the polystyrene blocks are activated by the interaction between these blocks and THF in the mixed solvent.  相似文献   

4.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

5.
The chloromagnesium exchange of 4‐chlorostyrene provides an easy access to a new versatile polymerizable 2,2,5‐trimethyl‐4‐phenyl‐3‐azahexane‐3‐nitroxide (TIPNO)‐based nitroxide. Indeed, first, its alkoxyamine based on the α‐methyl benzyl radical fragment efficiently mediates the polymerization of styrene (respectively n‐butyl acrylate) to yield branched polystyrene [respectively poly(n‐butyl acrylate)] with alkoxyamine function as branch point and well‐defined branches. Second, the self‐condensing of this polymerizable nitroxide by manganese coupling affords a mixture of oligomeric linear polyalkoxyamines. Polymerization of styrene mediated with these polyalkoxyamines gives multiblock polystyrenes with alkoxyamine group as linker between polystyrene blocks and exhibits the following features: the synthesis of the polystyrene blocks is controlled as their average molecular weight Mn(block) increases linearly with conversion and their average dispersity Mw/Mn(block) decreases with it. At a given temperature, the molecular weight and the dispersity of the polyalkoxyamines weakly impact Mn(block) and Mw/Mn(block). In contrast, the molecular weight of the multiblock polystyrene increases linearly with conversion until reaching a constant value. The number of block is independent of the molecular weight of the polyalkoxyamines. These unusual results can be explained by the fact that during polymerization, mediating TIPNO‐based polymeric nitroxides with different lengths are generated and are exchanged. Finally the dispersity of the multiblock polystyrene is quite broad and lies between 1.7 and 2.8. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

6.
An anionic polymerization procedure for preparing multiblock copolymers of styrene and isoprene is described. The process is based on the initial specific incorporation of isoprene when mixtures of styrene and isoprene are polymerized with butyllithium in hydrocarbon solution. As examples, linear (AB)3 block copolymers have been prepared by interrupting styrene polymerization by step additions of isoprene at times programmed according to the reactivity ratios and the rate constants for styrene and isoprene propagations. The products were characterized by means of osmometry, light scattering, gel-permeation chromatography, and density-gradient ultracentrifugation. The analyses showed that the multiblock copolymers are free from polymeric impurities and reasonably homogeneous in molecular weight and composition. The polystyrene segment lengths were analyzed by means of GPC after the oxidative degradation of the polyisoprene moieties in the copolymers. The results suggest that the polyisoprene blocks contain a nonnegligible amount of styrene but that this monomer is incorporated as very short segments. On the other hand the polystyrene blocks produced at the end of the copolymerizations appear to have narrow molecular weight distributions.  相似文献   

7.
AB block copolymers of 2‐(2′,3′,4′,6′‐tetra‐O‐acetyl‐β‐D‐glucopyranosyloxy)ethyl acrylate (AcGEA) with styrene (St) have been synthesized by atom transfer radical polymerization using well‐defined bromo‐terminated polystyrene as a macroinitiator. An O‐deacetylation of the precursor copolymers affords amphiphilic block copolymers, PSt‐b‐PGEA, with well‐defined glycopolymer segments and narrow molecular weight distributions (Mw/Mn < 1.4). The examination of the aqueous solution of these amphiphilic block copolymers revealed the formation of ordered aggregates.  相似文献   

8.
New linear and three-arm star thermoplastic elastomers (TPEs) comprising a rubbery polysobutylene (PIB) midblock flanked by glass polystyrene (PSt) blocks have been synthesized by living carbocationic polymerization in the presence of select additives by sequential monomer addition. First, isobutylene (IB) was polymerized by bi- and trifunctional tert-ether (dicumyl- and tricumyl methoxy) initiators in conjunction with TiCl4 conintiator in CH3Cl/methylcyclohexane (MeCHx) (40/60 v/v) solvent mixtures at ?80°C. After the living, narrow molecular weight, distribution PIB (M?w/M?n = 1.1-1.2) has reached the desired molecular weight, styrene (St) together with an electron pair donor (ED) and a proton trap (di-tert-butylpyridine, DtBP) were added to block PSt from the living chain ends. Uncontrolled initiation by protic impurities that produces PSt contamination is prevented by the use of DtBP. PSt-PIB-PSt blocks obtained in the absence of additives are contaminated by homopolymer and /or diblocks due to inefficient blocking and initiation by protic impurities, and exhibit poor physical properties. In contrast in the presence of the strong ED N,N-dimethylacetamide (DMA) and DtBP the blocking of St from living PIB chain occurs efficiently and block copolymers exhibiting good mechanical properties can be prepared. Virgin TPEs can be repeatedly compression molded without deterioration of physical properties. The products exhibit a low and a high temperature Tg characteristic of phase separated PIB and PSt domains. Transmission electron microscopy of linear triblocks containing ~ 34 wt % PSt also indicates microphase separation and suggests PSt rods dispersed in a PIB matrix.  相似文献   

9.
Well defined AB block copolymers of polystyrene and poly(dimethyl siloxane) have been used as stabilizers in the dispersion polymerisation of styrene in n-alkanes. The dependences of the particle size and particle size distribution on the relative block lengths in the copolymer have been studied. From phase separation studies of polystyrene in n-alkanes, both in the presence and absence of AB block copolymer, the threshold molecular weight for precipitation has been determined. An understanding of the dispersion polymerization kinetics and the broad particle size distribution follows from the relatively high solubility of low molecular weight polystyrene in n-alkanes.  相似文献   

10.
Hydrophobic–hydrophilic block copolymers were prepared by “living” anionic polymerization. They consist of polystyrene and poly(ethylene oxide) blocks, and are soluble in water. Their interfacial properties were investigated, employing aqueous solutions. The block copolymers lowered the surface tension of water in analogy with the low molecular weight surfactants such as sodium lauryl sulfate and heptaethylene oxide n-dodecyl ether. Their aqueous solutions exhibited solubilization properties differing from those of polyethylene glycol. Therefore, it is thought that the polystyrene blocks produce solubilization phenomena. In samples of the same styrene content, the precipitation temperature of a high molecular weight copolymer in water was lower than that of a low molecular weight copolymer at the same concentration in the same solvent. The surface tension and precipitation temperature of aqueous solutions seem to be influenced by molecular weight and composition.  相似文献   

11.
The synthesis of arborescent styrenic homopolymers and copolymers was achieved by anionic polymerization and grafting. Styrene and p‐(3‐butenyl)styrene were first copolymerized using sec‐butyllithium in toluene, to generate a linear copolymer with a weight‐average molecular weight Mw = 4000 and Mw/Mn = 1.05. The pendant double bonds of the copolymer were then epoxidized with m‐chloroperbenzoic acid. A comb‐branched (or arborescent generation G0) copolymer was obtained by coupling the epoxidized substrate with living styrene‐p‐(3‐butenyl)styrene copolymer chains with Mw ≈ 5000 in a toluene/tetrahydrofuran mixture. Further cycles of epoxidation and coupling reactions while maintaining Mw ≈ 5000 for the side chains yielded arborescent copolymers of generations G1–G3. A series of arborescent styrene homopolymers was also obtained by grafting Mw ≈ 5000 polystyrene side chains onto the linear and G0–G2 copolymer substrates. Size exclusion chromatography measurements showed that the graft polymers have low polydispersity indices (Mw/Mn = 1.02–1.15) and molecular weights increasing geometrically over successive generations. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
A novel synthetic strategy for the synthesis of graft copolymers is reported. Block copolymers containing segments with stable nitroxyl radicals side groups were first prepared by anionic polymerization, which were then used as a precursor for the subsequent nitroxide-mediated radical polymerization (NMRP) of styrene. This way, block–graft copolymers with polystyrene side chains grafted from one of the blocks were successfully synthesized in a controlled manner. In addition, block–graft copolymers with grafted polystyrene chains and a poly(tert-butyl methacrylate) block were subjected to hydrolysis to yield the corresponding amphiphilic polymers. The structures and the molecular weight characteristics of the polymers were characterized by spectral and chromatographic analyses. The surface morphology of thus obtained polymers was also investigated by microscopic techniques. © 2019 Wiley Periodicals, Inc. J. Polym. Sci. 2020 , 58, 62–69  相似文献   

13.
The kinetics of γ-radiation-induced free-radical polymerization of styrene were studied over the temperature range 0–50°C at radiation intensities of 9.5 × 104, 3.1 × 105, 4.0 × 105, and 1.0 × 106 rad/hr. The overall rate of polymerization was found to be proportional to the 0.44–0.49 power of radiation intensity, and the overall activation energy for the radiation-induced free-radical polymerization of styrene was 6.0–6.3 kcal/mole. Values of the kinetic constants, kp2/kt and ktrm/kp, were calculated from the overall polymerization rates and the number-average molecular weights. Gelpermeation chromatography was used to determine the number-average molecular weight M?n, the weight-average molecular weight M?w, and the polydispersity ratio M?w/M?n, of the product polystyrene. The polydispersity ratios of the radiation-polymerized polystyrene were found to lie between 1.80 and 2.00. Significant differences were observed in the polydispersity ratios of chemically initiated and radiation-induced polystyrenes. The radiation chemical yield, G(styrene), was calculated to be 0.5–0.8.  相似文献   

14.
The heat of fusion of poly(ethylene oxide) blocks has been measured by DSC on twelve polystyrene–poly(ethylene oxide) multiblock (AB)n copolymers and two ABA triblock copolymers after conditioning at various times and temperatures. Regardless of the length of polystyrene blocks, copolymers with poly(ethylene oxide) blocks with M?n = 404 showed no heat of fusion, those with M?n = 900 almost no peaks, those with M?n = 1960 small broad peaks, and those with M?n = 5650 clearly observable peaks. the greatest heat of fusion measured for block copolymers was 60–70% of the value for hompolymer. Small-angle x-ray patterns are given. The relation between crystal growth and block length is discussed.  相似文献   

15.
This paper describes the synthesis of amphiphilic block copolymers composed of an ionic poly(styrenesulfonate) first segment and a hydrophobic polystyrene second one, using TEMPO-mediated “living” radical polymerization. These copolymers proved to be efficient stabilizers in the emulsion polymerization of styrene.  相似文献   

16.
Abstract

A newly synthesized iniferter, N,N′-dimethyl-N,N′-bis(phenethyl)-thiuram disulfide, has been used in the free-radical living polymerization of styrene by a photochemical method. The low molecular weight (M w = 6000) difunctionalized polystyrene was used as a macroiniferter to photopolymerize methyl methacrylate, and was fractionated to obtain an A-B-A type block copolymer containing two poly(methyl methacrylate) units and one polystyrene unit in each block. The glass transition temperature, thermal stability, and 13C NMR of the block copolymer are discussed.  相似文献   

17.
The effects of polystyrene-b-poly(aminomethyl styrene) (PSn-b-PAMSm) stabilizers on the particle size (Dn) and size distribution (PSD) in dispersion polymerization of styrene were investigated. The block copolymers, PSn-b-PAMSm, were prepared as follows: (i) atom transfer radical polymerization (ATRP) of styrene (PS-Br), (ii) ATRP of vinylbenzylphthalimide with the PS-Br (PS-b-PVBP), and (iii) treatment of the PS-b-PVBP with hydrazine. When the dispersion polymerization of styrene proceeded at 60 °C in ethanol with PS19-b-PAMS130 stabilizer, spherical polystyrene particles with Dn=0.91 μm (PSD = 1.01) were obtained. The particle size was strongly affected by the copolymer composition. With an increase in PAMS block length from m=54 to 100 in PS17-b-PAMSm, particle diameter became smaller from 1.55 to 0.91 μm. On the other hand, an increase in the length from m=20 to 82 in PS34-b-PAMSms caused an increase in particle size from 0.35 to 0.70 μm. Titration of the particles suggests that 14–81% of stabilizers used in the polymerization system were attached on the polystyrene particle surfaces, depending on the composition of the block copolymers. Thus, for the dispersion polymerization of styrene, PSn-b-PAMSm block copolymers have both functions as a stabilizer during polymerization and surface-modification sites of polystyrene particles.  相似文献   

18.
Polystyrene–poly(ethylene oxide) PS–PEO di- and triblock copolymers have been used as stabilizers in the emulsion polymerization of styrene and styrene–butylacrylate for the preparation of “hairy latexes”. The polymerization kinetics and the efficiency of these polymeric surfactants were correlated with the molecular characteristics of the block copolymer. It was shown that the efficiency decreased with increasing molecular weight and PS content of the block copolymer. The PEO frige, with a thickness of 4–25 nm, on the latex particle surface could be characterized and it was shown by differential scanning calorimetry (DSC) that water is strucured in that PEO layer. Film formation with “hairy latexes” was also examined both by DSC and thermomechanical analysis. The properties and application possibilities, such as in controlled latex flocculation, have been reviewed.  相似文献   

19.
Cationic polyelectrolytes and polymeric betaines with narrow molecular weight distribution as well as block copolymers containing charged and uncharged blocks of different hydrophilicity/hydrophobicity were synthesized by different routes of radical polymerization. The cationic polyelectrolytes were characterized with respect to solution properties and electrolyte behaviour. The block copolymers serve as powerful stabilizers in precipitation and emulsion polymerization processes.  相似文献   

20.
Polyamides 6.10 and 6.6 (PA* 6.10 and 6.6) containing small amounts of ? N?N? units in the main chains were prepared by interfacial polycondensation between hexamethylenediamine and sebacoyl chloride or adipoyl chloride with addition of azobiscyanopentanoyl chloride. Polyamide–polystyrene block copolymers (PA-b-PSt) were then prepared by decomposition of the ? N?N? units of PA*, initiating radical polymerization of styrene in m-cresol. The average PA block length of PA-b-PSt thus formed was longer than that expected from the initially present PA segments between the ? N?N? units. This is probably due to recombination of PA radicals whose initiation efficiency is as low as 15%. The PSt blocks also had higher molecular weight (7000–79,000) in comparison with homopolystyrene produced from monomeric azobiscyanopentanoic acid used as an initiator due to higher viscosity of polymerization system. Variation of intrinsic viscosity and turbidimetric titration behavior along with the change in composition were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号