首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Superhydrophobic thin films were prepared on glass by air-brushing the in situ polymerization compositions of D5/SiO2. The wettability and morphology were investigated by contact angle measurement and scanning electron microscopy. The most superhydrophobic samples prepared had a static water contact angle of 157° for a 5 μl droplet and a sliding angle of ∼1° for 10 μl droplet. Thermal stability analysis showed that the surface maintained superhydrophobic at temperature up to 450 °C. Air trapping and capillary force on superhydrophobic behavior were evaluated.  相似文献   

2.
Iron oxide/silica (Fe:Si as 1:10 atomic ratio) composite materials have been prepared by calcination for 3 h at different temperatures (400-900 °C) of xerogel precursor obtained via a formamide modified sol-gel process. The process involved TEOS and iron(III) nitrate, nitric acid and formamide. Genesis of the composite materials from the xerogel precursor has been investigated by TGA, DSC, FTIR, XRD, SEM and EDX. Results indicated that all the calcined composites are mainly composed of amorphous iron oxide dispersed as finely divided particles in amorphous silica matrixes. Nitrogen adsorption/desorption isotherms revealed a reversible type I of isotherms indicative of microporosity. However, high SBET surface area and microsporosity were observed for the calcined composite materials (e.g. SBET = 625 m2 g−1, and Sαs = 556 m2 g−1 for the composite calcined at 400 °C). Formation of the porous texture was discussed in terms of the action of formamide, which enhanced strengthening of the silica gel network during evaporation of the more volatile components within the composite body during the drying process.  相似文献   

3.
Herein, we report a facile and low cost method for the fabrication of superhydrophobic surface via spin coating the mixture of polydimethylsiloxane precursor (PDMS) and silicon dioxide (SiO2) nanoparticles. The surface hydrophobicity can be well tuned by adjusting the weight percent of PDMS and SiO2. The water contact angle (WCA) can increase from 106.8 ± 1.2° on PDMS film to 165.2 ± 2.3° on PDMS/SiO2 coating, companying with a change from adhering to rolling which was observed from tilting angle (TA) characterization. Multi-scale physical structures with SiO2 nanoparticle aggregates and networks of SiO2 nanoparticle aggregates are characterized by scanning electron microscopy (SEM) and atomic force microscope (AFM), and they can be observed more clearly from the AFM images treated with software (WSxM). Then the relationship between surface hydrophobicity and structures is further discussed based on Wenzel and Cassie models, indicating that the appearance of networks of nanoparticle aggregates is important in the Cassie state. The superhydrophobic coating can keep the superhydrophobicity at least for one month under environment conditions and readily regenerate after mechanical damage. Additionally, the superhydrophobic coating can be fabricated using other methods including dip coating, spray coating and casting. Thus, a large area of superhydrophobic coatings can be easily fabricated. Therefore the range of possible applications for these facile and versatile methods can be expanded to various actual conditions.  相似文献   

4.
A facile and novel method was developed to fabricate rough Co3O4 surface with hierarchical micro- and nanostructures by the combination of simple solid state reactions and coating process. After modification with stearic acid, a superhydrophobic surface with water contact angle of 155 ± 1.8° and sliding angle of 2° was obtained. The superhydrophobic Co3O4 surface remained superhydrophobic property in a wide pH range from 3 to 14. The superhydrophobic Co3O4 surface also showed excellent self-cleaning property and high stability in ambient environments.  相似文献   

5.
The effect of incident angle on the quality of SIMS molecular depth profiling using C60+ was investigated. Cholesterol films of ∼300 nm thickness on Si were employed as a model and were eroded using 40 keV C60+ at an incident angle of 40° and 73° with respect to the surface normal. The erosion process was characterized by determining at each angle the relative amount of chemical damage, the total sputtering yield of cholesterol molecules, and the interface width between the film and the Si substrate. The results show that there is less molecule damage at an angle of incidence of 73° and that the total sputtering yield is largest at an angle of incidence of 40°. The measurements suggest reduced damage is not necessarily dependent upon enhanced yields and that depositing the incident energy nearer the surface by using glancing angles is most important. The interface width parameter supports this idea by indicating that at the 73° incident angle, C60+ produces a smaller altered layer depth. Overall, the results show that 73° incidence is the better angle for molecular depth profiling using 40 keV C60+.  相似文献   

6.
A superhydrophobic surface originated from quincunx-shape composite particles was obtained by utilizing the encapsulation and graft of silica particles to control the surface chemistry and morphology of the hybrid film. The composite particles make the surface of film form a composite interface with irregular binary structure to trap air between the substrate surface and the liquid droplets which plays an essential role in obtaining high water contact angle and low water contact angle hysteresis. The water contact angle on the hybrid film is determined to be 154 ± 2° and the contact angle hysteresis is less than 5°. This is expected to be a simple and practical method for preparing self-cleaning hydrophobic surfaces on large area.  相似文献   

7.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

8.
A stable and conductive composite material based on NH4PO3 and amorphous oxides (SiO2-P2O5) has been prepared by a wet-chemical route following with firing in ammonia. The composite showed high proton conductivity in both ambient air and humidified 5% H2/Ar. A total conductivity of 6.0-19 mS/cm in the temperature range of 150-250 °C has been achieved. The conductivity (about 19 mS/cm) is stable in humidified 5% H2/Ar during ageing at 175 °C for over 100 h. This material is a potential electrolyte for intermediate temperature fuel cells and other electrochemical devices.  相似文献   

9.
Ag-TiO2-Thiol/Poly(methyl methacrylate) (PMMA) coating has been prepared via adsorbed-layer nanoreactor technique and self-assembling method. The composite coating shows a superhydrophobic property with reversible switching of adhesion. In the UV-vis spectra, absorption appeared in ultraviolet region of 229-293 nm (UVC region) and 320-370 nm (UVA region). Additionally, the stability of the superhydrophobic surface was tested under the following conditions: (1) in basic solution (pH = 14); (2) in acid solution (pH = 1); (3) in artificial seawater. The coating shows stability since the contact angle of the sample still remained higher than 150° in the above conditions. The corrosion resistance of the superhydrophobic surfaces was investigated by electrochemical measurements and the results revealed that the superhydrophobic coatings are anticorrosive well.  相似文献   

10.
Layer-by-layer (LbL) deposition of CuInS2 (CIS) thin films at room temperature (25 °C) from alkaline CuSO4 + In2(SO4)3 and Na2S precursor solutions was reported. The method allowed self-limited growth of CIS films with nanocrystalline structure and composed of densely packed nanometer-sized grains. The as-deposited CIS film was 250 nm thick and composed of closely packed particles of 20-30 nm in diameter. The alkaline cationic precursor solution was obtained by dissolving CuSO4 and InSO4 in deionized water with a appropriate amount of hydrazine monohydrate (H-H) and 2,2′,2″-nitrilotriethanol (TEA). CIS films were annealed at 200 °C for 2 h and effect of annealing on structural, optical, and surface morphological properties was thoroughly investigated by means of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV-vis spectrometer, C-V, and water contact angle techniques, respectively.  相似文献   

11.
Electrodeposition was employed to fabricate magnetite (Fe3O4) coated carbon fibers (MCCFs). Temperature and fiber surface pretreatment had a significant influence on the composition and morphology of Fe3O4 films. Uniform and compact Fe3O4 films were fabricated at 75 °C on both nitric acid treated and untreated carbon fibers, while the films prepared at 60 °C were continuous and rough. Microwave measurements of MCCF/paraffin composites (50 wt.% of MCCFs, pretreated carbon fibers as deposition substrates) were carried out in the 2-18 GHz frequency range. MCCFs prepared at 60 °C obtained a much higher loss factor than that prepared at 75 °C. However, the calculation results of reflection loss were very abnormal that MCCFs prepared at 60 °C almost had no absorption property. While MCCFs prepared at 75 °C exhibited a good absorption property and obtained −10 dB and −20 dB refection loss in wide matching thickness ranges (1.0-6.0 mm and 1.7-6.0 mm range, respectively). A secondary attenuation peak could also be observed when the thickness of MCCF/paraffin composite exceeded 4.0 mm. The minimum reflection loss was lower.  相似文献   

12.
A nano-hybrid composite of octadecyl acrylate/maleic anhydride/styrene (OA/MA/St) encapsulating nano-TiO2 with an average particle size of 30-60 nm was fabricated based on chemical modification of nanotitania. The polymer hybrid OA/MA/St-TiO2 and nano-TiO2 were characterized by infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), static contact angle (CA) as well as transmission electron microscopy (TEM). FT-IR spectra and TGA results suggest that the copolymer OA/MA/St adheres on the surface of nano-TiO2 through physical adsorption and chemical bonding. The calculated reacted OH surface density is about 0.6 OH/nm2, and the modification efficiency is approximately 27.28%. In addition, when the molar ratio of OA/MA/St is 7:2:1, the hybrid shows the strongest hydrophobicity, and its static contact angle reaches as high as 146°. TEM image of the hybrid OA/MA/St-TiO2 reveals that the modified particles have good dispersibility and compatibility with n-hexane.  相似文献   

13.
Nano-sized Y2O3 particles were codeposited with nickel by electrolytic plating from a nickel sulfate bath. The effects of the incorporated Y2O3 on the structure, morphology and mechanical properties (including microhardness, friction coefficient and wear resistant) of Ni-Y2O3 composite coatings were studied. It is observed that the addition of nano-sized Y2O3 particles shows apparent influence on the reduction potential and pH of the electrolyte. The incorporated Y2O3 increases from 1.56 wt.% to 4.4 wt.% by increasing the Y2O3 concentration in the plating bath from 20 to 80 g/l. XRD results reveal that the incorporated Y2O3 particles favour the crystal faces (2 0 0) and (2 2 0). SEM and AFM images demonstrate that the addition of Y2O3 particles causes a smooth and compact surface. The present study also shows that the codeposited Y2O3 particles in deposits decrease the friction coefficient and simultaneously reduce the wear weight loss. Ni-Y2O3 composite coatings reach their best microhardness and tribological properties at Y2O3 content 4.4 wt.% under the experiment conditions.  相似文献   

14.
BixY3−xFe5O12 thin films have been grown on GGG (Gd3Ga5O12) (1 1 1) substrates by the combinatorial composition-spread techniques under substrate temperature (Tsub) ranging from 410 to 700 °C and O2 pressure of 200 mTorr. In order to study the effect of substrates on the deposition of BixY3−xFe5O12 thin films, garnet substrates annealed at 1300 °C for 3 h were also used. Magneto-optical properties were characterized by our home-designed magneto-optical imaging system. From the maps of Faraday rotation angle θF, it was evident that the Faraday effect appears only when Tsub = 430-630 °C. θF reaches to the maximum value (∼6°/μm, λ = 632 nm) at 500 °C, and is proportional to the Bi contents. XRD and EPMA analyses showed that Bi ions are easier to substitute for Y sites and better crystallinity is obtained for annealed substrates than for commercial ones.  相似文献   

15.
Be3N2 thin films have been grown on Si(1 1 1) substrates using the pulsed laser deposition method at different substrate temperatures: room temperature (RT), 200 °C, 400 °C, 600 °C and 700 °C. Additionally, two samples were deposited at RT and were annealed after deposition in situ at 600 °C and 700 °C. In order to obtain the stoichiometry of the samples, they have been characterized in situ by X-ray photoelectron (XPS) and reflection electron energy loss spectroscopy (REELS). The influence of the substrate temperature on the morphological and structural properties of the films was investigated using scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that all prepared films presented the Be3N2 stoichiometry. Formation of whiskers with diameters of 100-200 nm appears at the surface of the films prepared with a substrate temperature of 600 °C or 700 °C. However, the samples grown at RT and annealed at 600 °C or 700 °C do not show whiskers on the surface. The average root mean square (RMS) roughness and the average grain size of the samples grown with respect the substrate temperature is presented. The films grown with a substrate temperature between the room temperature to 400 °C, and the sample annealed in situ at 600 °C were amorphous; while the αBe3N2 phase was presented on the samples with a substrate temperature of 600 °C, 700 °C and that deposited with the substrate at RT and annealed in situ at 700 °C.  相似文献   

16.
Cathodoluminescent (CL) spectra of Li-doped Gd2−xYxO3:Eu3+ solid-solution (0.0?x?0.8) were investigated at low voltages (300 V-1 kV). The CL intensity is maximum for the composition of x=0.2 and gradually reduces with increasing the amount of substituted Y content. In particular, small (∼100 nm) particles of Li-doped Gd1.8Y0.2O3:Eu3+ are obtained by firing the citrate precursors at only 650°C for 18 h. Relative red-emission intensity at 300 V of this phosphor is close to 180% in comparison with that of commercial red phosphor Y2O3:Eu3+. An increase of firing temperature to 900°C results in 400-600 nm sized spherical particles. At low voltages (300-800 V), the CL emission of 100 nm sized particles is much stronger than that of 400-600 nm sized ones. In contrast, the larger particles exhibit the higher CL emission intensity at high voltages (1-10 kV). Taking into consideration small spherical morphology and effective CL emission, Li-doped Gd1.8Y0.2O3:Eu3+ appears to be an efficient phosphor material for low voltage field emission display.  相似文献   

17.
Spherical-particle MCM-41 was synthesized at room temperature, and, then, impregnated with aqueous solutions of NH4VO3 to produce variously loaded VOx/MCM-41 composite materials. Bulk and surface properties of the materials thus produced were characterized by means of X-ray powder diffractometry (XRD), infrared spectroscopy (FTIR), N2 sorptiometry and X-ray photoelectron spectroscopy (XPS). Results obtained indicated that subsequent calcination at 550 °C (for 2 h) of the blank and impregnated MCM-41 particles, results in materials assuming the same bulk structure of MCM-41, and exposing uniformly mesporous, high area surfaces (Pw = 2.0-2.3 nm; 974-829 m2/g), except for the material obtained at 20 wt%-V2O5 that was shown to suffer a considerable loss on surface area (down to 503 m2/g). XPS results implied that the immobilization of the VOx species occurs via interaction with surface OH/H2O groups of MCM-41, leading to the formation of vanadate (VO3) surface species, as well as minor V-O-Si and V2O5-like species. However, in all cases, the vanadium sites remained pentavalent and exposed on the surface.  相似文献   

18.
Bi2Sr2Ca1Cu2O8+δ (Bi-2212) films were grown on (1 0 0) oriented SrTiO3 (STO) substrate using sol-gel spin-coating method. The effects of heat treatment conditions and coating times on the phase formation and surface morphology were investigated using thermal analysis, optical microscope, X-ray diffraction, and scanning electronic microscopy. Mixed phases were formed from 820 to 840 °C, and Bi-2212 single phase was obtained at 830 °C for 3 h. c-axis epitaxial films with smooth surfaces were obtained by drying at 600 °C and coating for 5 times.  相似文献   

19.
TiO2 photocatalysts deposited on activated carbon (TiO2/AC) were prepared by dip-hydrothermal method at 180 °C using peroxotitanate as a precursor, then calcinated at 300-800 °C. The samples were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy and the nitrogen absorption. Their photocatalytic activity was evaluated by degradation of methyl orange (MO). The results showed that TiO2 particles of anatase type were well deposited on the activated carbon surface. TiO2/AC calcinated at 600 °C exhibited the best photocatalytic performance. For the comparison, the same photocatalysis experiment was carried out for two mixtures of commercial TiO2 (Degussa P25) with AC and synthetic TiO2 with AC. It was found that the composite catalyst TiO2/AC was better than the two mixtures. Besides, different from fine powdered TiO2, the granular TiO2/AC photocatalysts could be easily separated from the bulk solution and reused; indeed, its photocatalytic ability was hardly decreased after a five-cycle for MO degradation. The kinetics of the MO degradation fitted well the Langmuir-Hinshelwood model.  相似文献   

20.
Stable superhydrophobic films were prepared on the electrochemical oxidized titania/titanium substrate by a simple immersion technique into a methanol solution of hydrolyzed 1H,1H,2H,2H-perfluorooctyltriethoxysilane [CF3(CF2)5(CH2)2Si(OCH2CH3)3, PTES] for 1 h at room temperature followed by a short annealing at 140 °C in air for 1 h. The surface morphologies and chemical composition of the film were characterized by means of water contact angle (CA), field emission scanning electron microscopy (FESEM), atomic force microscope (AFM) and X-ray photoelectron spectroscopy (XPS). The water contact angle on the surface of this film was measured to be as high as 160°. SEM images showed that the resulting surfaces exhibited special hierarchical structure. The special hierarchical structure along with the low surface energy leads to the high surface superhydrophobicity. The corrosion resistance ability and durance property of the superhydrophobic film in 3.5 wt.% NaCl solution was evaluated by the electrochemical impedance spectroscopy (EIS). The anticorrosion properties of the superhydrophobic film are compared to those of unmodified pure titanium and titania/titanium substrates. The results showed that the superhydrophobic film provides an effective corrosion resistant coating for the titanium metal even with immersion periods up to 90 d in the 3.5 wt.% NaCl solution, pointing to promising future applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号