首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
甲醇溶液辉光放电等离子体电解过程出现明显的非法拉第定律现象, 主要产物是氢气和甲醛, 还有少量一氧化碳、甲烷、乙烷、丙烷、1,3,5-三噁烷和水等, 产物和产量受放电极性和辅助电解质及放电电压等因素的影响. 在甲醇溶液电导率为11.40 mS·cm-1, 放电电压700 V 条件下, 阳极气体产量为55.90 mol/(mol electrons), 阴极气体产量为707.90 mol/(mol electrons), 阴极气体产量是阳极气体产量的12.66 倍, 气相产物中氢气含量在86%(molar fraction)以上. 在等离子体层中甲醇分解过程和其它类型的等离子体分解过程类似, 蒸汽鞘层中的加速电子是引发辉光放电过程非法拉第定律现象的决定因素. 阴极辉光放电过程中等离子体-溶液界面上的主要活性物种是中性粒子和电子,阳极辉光放电过程中等离子体鄄溶液界面上的主要活性物种是中性粒子和正离子. 辅助电解质对产物的影响主要是通过影响界面上发生的后续反应过程来表现.  相似文献   

2.
Glow discharge mass spectrometry was used for the direct elemental analysis of solids with gas inclusions. The background signal of a glow discharge, which converts the analyte into ions, is higher than the background signals of other plasma sources by several orders of magnitude. The structure and sources of background contamination were analyzed in this work. It was found that hydrocarbon and water impurities, which are adsorbed on the inner surfaces of the discharge chamber, make the major contribution to the background signal of a glow discharge source. A glow discharge plasma licked the walls of the discharge chamber to desorb contaminants. We proposed using a hollow cathode with a holed cap arranged at the vertex. On the appearance of a discharge, a plasma plug is formed in the cathode hole in front of the orifice. This plasma plug prevents a gas flow from the hole to the source chamber. As a result, a gas pressure drop is formed whose magnitude depends on the orifice diameter in the cap.  相似文献   

3.
Polytetrafluoroethylene (PTFE) composite coatings doped copper acetate and polyurethane (PU) were prepared on rubber substrate by low‐energy electron beam dispersion technique. The effects of dopant and glow discharge treatment on the surface morphology, structure and tribological properties of the coatings were investigated. The results showed that Cu–PTFE composite coatings form uniform surface and dense column structure with spherical aggregations under glow discharge treatment. PU coating shows the large size of protuberance structure but PU–PTFE coating presents spherical structure. Both of the coatings become relative dense and smooth after discharge treatment, and Cu–PU–PTFE composite coatings possess a smoother surface and lower polar component of surface energy. Cu doping weakens the crystallinity and ordering degree of composite coatings, but glow discharge increases the ordering degree and branched structure of C―H groups. Friction experiment indicated that Cu fails to improve the wear resistance of PTFE coatings but glow discharge treatment can do it. Cu–PU–PTFE coatings after discharge treatment have the higher wear resistance and lower coefficient of friction. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
The emission radiant output of an ordinary glow discharge plasma was increased by several factors through secondary inductively coupled RF excitation produced by an external coil and a 136.2MHz oscillator. The gain factor was determined at several glow discharge currents and voltages in copper alloys and cast iron samples. Improved linear calibration curves were obtained because the RF-boosted glow discharge source decreased the effect of self-absorption.  相似文献   

5.
Plasma polymerization of trimethylsilane (TMS) was carried out and investigated in a direct current (dc) glow discharge. The formation of TMS plasma glow was carefully examined with optical photography as compared with an Ar dc glow discharge. It was found that there exists a significant difference in the nature of glow and how the glow is created in TMS glow discharge, which polymerizes or causes deposition, and that of monatomic gas such as Ar, which does not polymerize or deposit. In dc Ar discharge, the negative glow, which is the most luminous zone in the discharge, develops in a distinctive distance away from the cathode surface, and the cathode remains in the dark space. In a strong contrast to this situation, in TMS dc discharge, the primary glow that is termed as cathode-glow in this paper appears at cathode surface, while a much weaker negative glow as a secondary glow was observed at the similar location to where the Ar negative glow appears. The deposition results of plasma polymers and gas phase composition data of TMS in a closed reactor acquired by ellipsometry and residual gas analyzer (RGA) measurements clearly indicated that the cathode-glow in TMS glow discharge is mainly associated with chemically reactive species that would polymerize or form deposition, but the negative glow is related to species from simple gases that would not polymerize or deposit. Based on the glow location with respect to the cathode, it was deduced that the cathode-glow is due to photon emitting species created by molecular dissociation of the monomer that is caused by low energy electrons emanating from the cathode surface. The negative glow is due to the ionization and the formation of excited neutrals of fragmented atoms caused by high-energy electrons. Polymerizable species that would cause deposition of material (plasma polymers) are created mainly by the fragmentation of monomer molecules by low energy electrons, but not by electron-impact ionization of the monomer.  相似文献   

6.
This study considers the coupling effect between the cathode and anode regions-the two most important regions in a glow discharge. Cathode and anode processes are tightly coupled by electron and ion coupling effects. Both electron and ion coupling effects were observed by studying excited Ar atoms in the cathode and anode regions and observing laser-induced space charge variations and the optogalvanic effect. Laser-induced space charge variations in the glow discharge were observed by the change in potential of an electrical probe. This signal, called the optopotential signal, provides useful information about the cathode and anode processes, and may become another useful spectroscopic detection method.  相似文献   

7.
A self-consistent, two-dimensional hybrid fluid-particle model is used to study the effect of cathode geometry on the plasma produced in an argon glow discharge for conditions typically of the commercially available glow discharge mass spectrometer system (VG9000 spectrometer and Megacell source). For a given power supply voltage and gas pressure, we show that the spatial distribution of the plasma in the discharge volume is strongly dependent on the cathode geometry. The plasma created in a discharge with a pin cathode tends to form a ring around the cathode, while the plasma in a discharge with a larger diameter, disk cathode is centered on-axis between the cathode face and the anode. The ion current arriving at the entry plane of the mass spectrometer thus depends strongly on the cathode geometry. This suggests that analytical performance can be enhanced by optimization of the cathode (sample) geometry.  相似文献   

8.
A laser ablation particle beam pulsed glow discharge mass spectrometer (LA-PB-GD-TOFMS) was designed and used for fundamental studies. The instrument consists of a three stage aerodynamic lens system, a hollow cathode pulsed glow discharge and a time-of-flight mass spectrometer. The particle beam interface was constructed to provide an efficient particle transfer into the hollow cathode. Calculations showed that particles between 1 and 3000 nm in diameter are able to pass through this interface.  相似文献   

9.
The dissociation of hydrogen sulfide has been studied in an atmospheric-pressure glow discharge rotating between concentric electrodes in an axial magnetic field. Though the electrodes were heated to remove the sulfur formed in the discharge, stable operation was possible. The characteristics of the discharge and the influence of experimental parameters on the conversion of hydrogen sulfide and the energy efficiency are reported.  相似文献   

10.
NiO-loaded semiconductors have been extensively used as the photocatalysts for water splitting. The metal-support interface is an important factor affecting the efficiency. In the present work, the pretreatment methods were studied to produce a more desirable metal-support interface using Ta2O5 and ZrO2 as the support. The traditional method includes a thermal decomposition, reduction at 773 K, and oxidation at 473 K (R773-O473). The thermal decomposition of Ni(NO3)2 makes the Ni atoms migrate into the bulk of the supports, resulting in a diffused interfacial region. Alternatively, a cold plasma treatment was used to replace the thermal decomposition. Metal salts are quickly decomposed by glow discharge plasma treatment at room temperature, avoiding the thermal diffusion of Ni atoms. With the sequent R773-O473 treatment, a clean metal-support interface is produced. Moreover, the metal particles have optimal shapes with a larger surface. In photocatalysis, the clean metal-support interface is more favorable for the charge separation and transfer, and the increased metal surface provides more active sites. NiO/Ta2O5 and NiO/ZrO2 prepared with the plasma treatment exhibit higher activity for photocatalytic hydrogen generation from pure water and methanol solution, respectively. This work shows the potential of cold plasma treatment in the preparation of metal-loaded catalysts and nanostructured materials.  相似文献   

11.
 The use of the change in the oscillation frequency of the current of a new atmospheric helium glow discharge for sensitive signal detection for gas chromatography is studied. The effluent of a capillary column is directed into the glow discharge cell perpendicular to the axis of the glow discharge that existed between a platinum anode and cathode. A stable discharge is obtained when several hundred volts are applied between the 0.2-mm gap between the anode and cathode. The effects of the electrode gap, discharge voltage and gas flow rate on the baseline frequency and discharge current were investigated. The chromatogram shows that the discharge current and discharge gap have a strong influence on the detector response. The discharge current shows positive peaks; however, frequency peaks are positive or negative depending on the discharge conditions. The response of the detector is in the femto-mole and pico-mole range for nonane and decane. Received August 5, 1997. Revision September 2, 1999  相似文献   

12.
The optical emission spectrum of the argon atomic lines in a glow discharge is calculated, using a collisional–radiative model for argon, which was recently developed (A. Bogaerts et al., Collisional–radiative model for an argon glow discharge, J. Appl. Phys., vol. 84, No 1, 1998). It is shown that the lines corresponding to 4p→4s transitions clearly dominate the spectrum. They are, however, not responsible for the characteristic visible light in the glow discharge, because they are lying between 700 and 1000 nm, which is mainly in the near infrared. The characteristic blue light of the glow discharge is caused by the lines corresponding to 5p→4s transitions (lying in the blue–violet part of the spectrum). Beside these two most important line groups (the so-called `red' and `blue' lines) a large number of other lines are present, making the entire argon spectrum quite complex. The calculated spectrum is compared with experimental spectra from the literature, and excellent qualitative agreement is obtained.The calculated spatial distributions of optical emission lines originating from low excited levels (i.e., 4p, 3d, 5s, 5p, 4d, 6s) show a maximum in the cathode glow, caused by fast argon ion and atom impact excitation, to these levels, and a second maximum in the beginning of the negative glow, due to electron impact excitation. The maximum in the cathode glow is very pronounced for lines originating from the 4p levels, which is in agreement with experimental observations. The higher excited levels are not populated by fast argon ion and atom impact excitation but only by electron impact excitation; hence, lines originating from these levels exhibit only a maximum in the beginning of the negative glow.  相似文献   

13.
常压微等离子体电极是一种有望取代常用贵金属电极用于电化学反应的气体电极. 然而目前关于微等离子体阳极与离子溶液界面反应的研究及其用于金属电沉积的报道还较少. 本文使用常压微等离子体作为阳极, 通过紫外-可见吸收光谱监测阳极电解液中亚铁氰化钾被氧化生成的铁氰化钾的含量, 发现铁氰化钾的含量随放电时间的延长而增加, 并且其增加的速率与放电电流成比例. 在放电结束后, 随着放置时间的延长铁氰化钾的含量继续升高, 其升高的速率与放电时间的长短有关. 放电结束后铁氰化钾含量的增加速率远小于放电时的增加速率. 实验结果表明微等离子体电极可以作为气体阳极在等离子体和液体界面进行电荷传输, 并引发电化学反应, 同时在放电的过程中产生了氧化活性物质. 在饱和硫酸铜溶液中, 使用微等离子体阳极可以在不锈钢阴极上进行铜的电沉积, 电流效率达到90%.  相似文献   

14.
The so-called standard model is a semi-empirical, physically based model describing the signal response in the glow discharge optical emission spectroscopy. Its assumptions, implications and limitations are reviewed, including links to the underlying fundamental physics. Its implementation and practical use as a calibration model in analytical applications is described, including the determination of its key parameters, the emission yields. Some data processing techniques based on the standard model are reviewed, including the multi-element calibration fitting and the signal decomposition in complex spectra. It is shown how the emission yields can be used to collect information about the glow discharge excitation.  相似文献   

15.
The rapid inward migration of fluoride ions in growing anodic titanium oxide under a high electric field has been elucidated by anodizing a Ti–12 at% silicon alloy, where film growth proceeds at nearly 100% efficiency in selected electrolytes. Further, incorporated silicon species in the anodic film are immobile, acting as marker species. The migration rate of fluoride ions is determined precisely by three-stage anodizing, consisting of initial anodic film formation at a constant current density to 50 V in ammonium pentaborate electrolyte, subsequent incorporation of fluoride ions by reanodizing to 55 V in ammonium fluoride electrolyte and, finally, anodizing again in ammonium pentaborate electrolyte at high current efficiency. The resultant films were analyzed by glow discharge optical emission spectroscopy to reveal the depth distribution of fluoride ions and the location of the silicon marker species. The fluoride ions migrate inward at twice the rate of O2− ions. Consequently, anodizing of titanium in fluoride-containing electrolytes develops a fluoride-rich layer that separates the alloy substrate from the anodic oxide, with eventual detachment of the film from the substrate.  相似文献   

16.
在辉光放电分解乙醇制氢过程中, 高能电子在反应中起到了最为关键的作用, 非法拉第效应使得电流效率获得大幅度提升, 产物产量远远高于理论产量. 本文研究了乙醇水溶液辉光放电等离子体电解制氢的过程. 实验研究发现, 辉光放电分解乙醇水溶液的产物主要以H2和CO为主, 还有少量的C2H4、CH4、O2和C2H6. H2体积分数能达到59%以上, CO为20%左右. 通过对影响辉光放电的因素进行实验后发现: 乙醇体积分数的大小不会影响辉光放电的伏安特性参数; 电导率的提高会使‘Kellogg 区’收窄, 同时使放电尽快进入辉光放电. 此外, 乙醇体积分数越高H2体积分数越低, 产气速率在乙醇体积分数为30%和80%附近时达到极大值; 提高放电电压和电导率对辉光放电的影响规律是相类似的, 其实质都是增大了辉光放电加载在等离子鞘层两端的电压,H2体积分数基本不随二者的变化而变化, 但提高溶液的电导率更有利于减少辉光放电引起的焦耳热.  相似文献   

17.
向国强  江祖成  胡斌 《分析化学》2006,34(1):103-106
自行设计组装了射频供能辉光放电原子发射光谱仪器(rf-GD-AES),并对其分析导体试样的基本特性(包括光源的稳定性、电学特性和光谱特性)进行了研究。在此基础上建立了rf-GD-AES分析导电试样的方法,并用于铜合金标准样品中的A l和Mn的分析,其测定结果与标准值吻合很好,充分地显示了rf-GD-AES在固体样品直接分析中的潜力。  相似文献   

18.
Evaluation of the particle beam glow discharge mass spectrometry (PB-GDMS) system as a detector for liquid chromatography (LC) is described for the analysis of polycyclic aromatic hydrocarbons, steroids, selenoamino acids, and alkyllead compounds. A particle beam interface is used to introduce analyte species from the LC into a glow discharge source for subsequent vaporization and ionization. Mass spectra display classic EI fragmentation patterns for the organic compounds, as well as elemental and molecular information for the organometallic compounds. Chromatographic separations display good temporal correlation between UV and PB-GDMS detection modes. Detection limits for Pb in lead nitrate, triethyllead, and triphenyllead fall in the sub-ppb (ng) range.  相似文献   

19.
The operation of a glow discharge lamp with integrated microwave resonator for the analysis of electrically conducting solid samples by atomic emission spectrometry is described. While the glow discharge in argon at a pressure of 300 Pa mainly serves for the production of free sample atoms by cathodic sputtering, a 40 W microwave discharge is applied for additional excitation of the ablated material. The construction of the lamp and the optimization of the working conditions are described. The intensities as well as the signal-to-background ratios of many analytical lines were found to be improved as compared to a conventional glow discharge lamp. The analytical performance is demonstrated by analysis results for steel samples. Detection limits for 13 elements in steel are between 0.05 and 1 μg/g. Because of the optically thin plasma the new lamp shows a large linear dynamic range.  相似文献   

20.
A radiofrequency (rf) powered planar magnetron glow discharge ion source has been designed and coupled to a double-focusing mass spectrometer. Superposition of the electrical field of the plasma in the cathode dark space and the magnetic field obtained from a ring-shaped magnet located directly behind the sample (cathode) form the electron traps and enhance the sputtering and ionization efficiency of the ion source. In order to establish optimum conditions for the trace analysis of nonconducting materials, mass spectrometric studies have been carried out on the ion signal intensities and energy distributions of analyte and discharge gas ions depending on pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号