首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The usefulness of a C60‐fullerene modified gold (Au) electrode in mediating the oxidation of methionine in the presence of potassium ions electrolyte has been demonstrated. During cyclic voltammetry, an oxidation peak of methionine appearing at +1.0 V vs. Ag/AgCl was observed. The oxidation current of methionine is enhanced by about 2 times using a C60 modified gold electrode. The current enhancement is significantly dependent on pH, temperature and C60 dosage. Calibration plot reveals linearity of up to 0.1 mM with a current sensitivity of close to 50 mA L mol?1 and detection limit of 8.2×10?6 M. The variation of scan rate study shows that the system undergoes diffusion‐controlled process. Diffusion coefficient and rate constant of methionine were determined using hydrodynamic method (rotating disk electrode) with values of 1.11×10?5 cm2 s?1 and 0.0026 cm s?1 respectively for unmodified electrode while the values of diffusion coefficient and rate constant of methionine using C60 modified Au electrode are 5.7×10?6 cm2 s?1 and 0.0021 cm s?1 respectively.  相似文献   

2.
刘佩芳  文利柏 《中国化学》1998,16(3):234-242
The mass transport and charge transfer kinetics of ozone reduction at Nafion coated Au electrodes were studied in 0.5 mol/L H2SO4 and highly resistive solutions such as distilled water and tap water. The diffusion coefficient and partition coefficient of ozone in Nafion coating are 1.78×10-6 cm2·s-1 and 2.75 at 25℃ (based on dry state thickness), respectively. The heterogeneous rate constants and Tafel slopes for ozone reduction at bare Au are 4.1×10-6 cm·s-1, 1.0×10-6 cm·s-1 and 181 mV, 207 mV in 0.5 mol/L H2SO4 and distilled water respectively and the corresponding values for Nafion coated Au are 5.5×10-6 cm·s-1, 1.1×10-6 cm·s-1 and 182 mV, 168 mV respectively. The Au microelectrode with 3 μm Nafion coating shows good linearity over the range 0-10 mmol/L ozone in distilled water with sensitivity 61 μA·ppm-1 ·cm-2, detection limit 10 ppb and 95% response time below 5 s at 25℃. The temperature coefficient in range of 11-30℃ is 1.3%.  相似文献   

3.
《Electroanalysis》2005,17(7):556-570
Composites of inherently conductive polypyrrole (PPy) within highly hydrophilic poly(2‐hydroxyethyl methacrylate)‐based hydrogels (p(HEMA)) have been fabricated and their electrochemical properties investigated. The electrochemical characteristics observed by cyclic voltammetry suggest less facile reduction of PPy within the composite hydrogel compared to electropolymerized PPy, as shown by the shift in the reduction peak potential from ?472 mV for electropolymerized polypyrrole to ?636 mV for the electroconductive composite gel. The network impedance magnitude for the electroconductive hydrogel remains quite low, ca. 100 Ω, even upon approach to DC, over all frequencies and at all offset potentials suggesting retained electronic (bipolaronic) conductivity within the composite. In contrast, sustained application of +0.7 V (vs. Ag/AgCl, 3 M Cl?) for typically 100 min. (conditioning) to reduce the background amperometric current to <1.0 μA, resulted in complete loss of electroactivity. Nyquist plots suggest that sustained application of such a modest potential to the composite hydrogel results in impedance characteristics that resembles p(HEMA) without evidence of the conducting polymer component. PPy composite gels supported a larger ferrocene monocarboxylate diffusivity (Dappt=7.97×10?5 cm2 s?1) compared to electropolymerized PPy (Dappt=5.56×10?5 cm2 s?1), however a marked reduction in diffusivity (Dappt=1.01×10?5 cm2 s?1) was observed with the conditioned hydrogel composite. Cyclic voltammograms in buffer containing H2O2 showed an absence of redox peaks for electrodes coated with PPy‐containing membranes, suggesting possible chemical oxidation of polypyrrole by the oxidant  相似文献   

4.
High faradaic efficiencies can be achieved in the production of formic acid (HCOOH) by metal electrodes, such as Sn or Pb, in the electrochemical reduction of carbon dioxide (CO2). However, the stability and environmental load in using them are problematic. The electrochemical reduction of CO2 to HCOOH was investigated in a flow cell using boron‐doped diamond (BDD) electrodes. BDD electrodes have superior electrochemical properties to metal electrodes, and, moreover, are highly durable. The faradaic efficiency for the production of HCOOH was as high as 94.7 %. Furthermore, the selectivity for the production of HCOOH was more than 99 %. The rate of the production was increased to 473 μmol m?2 s?1 at a current density of 15 mA cm?2 with a faradaic efficiency of 61 %. The faradaic efficiency and the production rate are almost the same as or larger than those achieved using Sn and Pb electrodes. Furthermore, the stability of the BDD electrodes was confirmed by 24 h operation.  相似文献   

5.
Poly(hydroxyethylmethacrylate)‐based hydrogel membranes were applied to microfabricated, microdisk electrode arrays (MDEAs) of 50 μm (5184 disks), 100 μm (1296 disks) and 250 μm (207 disks) (d/r=4; A= 0.1 cm2) and studied by cyclic voltammetry (CV) in 1.0 mM ferrocene monocarboxylic acid (FcCO2H). The membrane produced an order of magnitude decrease in current densities and a shift to quasi reversibility due to a decrease in the Dappt of FcCO2H, from 4.51×10?6 cm2 s?1 to 1.42×10?8 cm2 s?1, (2.18×10?8 cm2 s?1 from release experiments). The MDEA050 (comprising 50 μm disks) maintained its enhanced current density attributes confirming its value as an effective electrode for biosensors. Finite element modeling (FEM) simulations successfully replicated the voltammograms of the MDEAs.  相似文献   

6.
The relative effects of adjustable fast atom bombardment (FAB) parameters (choice of matrix, primary atom flux, and primary atom energy) on the appearance of FAB spectra (including signal-to-noise, signal-to-background, and signal-to-matrix ratios) of several organic dyes have been investigated. Beam-induced chemical damage is minimized by lowering the primary atom flux, by raising the primary atom energy, and by selecting a matrix with radical scavenging properties (e.g., m-nitrobenzyl alcohol). The relative importance in minimizing this chemical damage is choice of matrix > primary atom flux > (nominal) primary atom energy, but optimization of the parameters involves a trade-off between sensitivity and damage. The effect of these parameters on thermal damage (fragmentation) is much less. It can be concluded from comparison of the dyes that the extent of beam damage does not depend simply on the standard reduction potential of the analyte.  相似文献   

7.
A naphthalenediimide (NDI)‐based conjugated polymer was synthesized by a two‐step direct C‐H arylation sequence. In the first step, two ethylenedioxythiophene units were coupled to NDI by direct arylation. In the second step, the direct arylation polycondensation of the monomer, formed in the first step, with 2,7‐dibromo‐9,9‐dioctylfluorene afforded the corresponding NDI‐based conjugated polymer ( PEDOTNDIF ) with molecular weight of 21,500 in 91% yield. The optical and electrochemical properties of the polymer were evaluated. The polymer showed ambipolar behavior in organic field‐effect transistors (OFETs). The electron mobility of PEDOTNDIF was estimated to be 2.3 × 10?6 cm2 V?1 s?1 using an OFET device with source‐drain (S‐D) Au electrodes. A modified OFET device with S‐D MgAg electrodes increased the electron mobility for PEDOTNDIF to 1.0 × 10?5 cm2 V?1 s?1 due to the more suitable work function of these electrodes, which reduced the injection barrier to the semiconducting polymer. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1401–1407  相似文献   

8.
The kinetics of viologen cation radicals reacting at hydrogen-evolving gold and nickel electrodes in pH 6–8 electrolytes have been investigated. Visible absorption spectroscopy was used to follow the course of the reaction in an optically transparent thin-layer electrochemical cell under quasi-steady-state conditions. The spectroelectrochemical data were analyzed using classical kinetics and yielded zero-order behavior with respect to the viologen cation radical. For methyl viologen cation radical at gold, a formal zero-order rate constant evaluated at zero hydrogen overpotential was found to be 1.0 × 10?13 mol s?1 cm?2. At nickel the comparable rate constant was nearly two orders of magnitude larger than at gold. Increasing pH from 6 to 8 at gold electrodes shifted both the hydrogen evolution and the methyl viologen cation radical reaction 60–70 mV/pH unit in a negative direction. The diquat cation radical behaved in a similar manner. The proposed mechanism involves a fast, non-rate-limiting, chemical reaction between the viologen cation radical and adsorbed hydrogen atom(s). Results are interpreted in terms of previous proposed hydrogen evolution reaction mechanisms.  相似文献   

9.
Strongly enhanced N2 first positive emission N2(B 3Πg → A 3Σ+u) has been observed on addition of N atoms into a flowing mixture of Cl and HN3. The dependence of the emission intensity on N atom concentration gave a rate constant for the reaction N + N3 → N2(B 3Πg) + N2(X 1Σ+g) of i(1.6 ± 1.1) × 10?11 cm3 molecule?1 s?1. That for the reaction Cl + HN3 → HCl + N3 is (8.9 ± 1.0) × 10?13 cm3 molecule?1 s?1 from the decay of the emission. Comparison of the emission intensity in ClHN3 with that in ClHN3N gave the rate constant of the reaction N3 + N3 → N2(B 3Πg) + 2N2(X 1Σ+g) as 1.4 × 10?12 cm3 molecule?1 s?1 on the assumption that N + N3 yields only N2(B 3Πg) + N2(X 1Σ+g).  相似文献   

10.
The dependence of space charge influenced current transients on the spatial distribution of photogenerated carriers in the bulk of a conductivity cell was investigated with the aim of correlating the observed time evolution of the currents with carrier properties such as mobilities and recombination constant. Approximate analytical solutions for the limiting cases of sheet and full interelectrode illumination show how experimental transients result from the competition between the dynamically interdependent processes: interionic recombination, charge carrier migration and discharge at the electrodes, and space charge buil-up. The voltage dependence of the time at which the secondary photocurrent maxima are observed yield mobilities of 2.0 × 10?4 and 2.8 × 10?3 cm2 V?1 s?1 respectively for the pyrene cation and the solvated electron in tetrahydrofuran at room temperature. A bimolecular recombination rate constant of 2.3 × 10?9 cm3 s?1 is shown to be consistent with the space charge densities present after total separation of the positive and negative carriers for various periods of charge carrier recombination.  相似文献   

11.
Titanium‐supported nanoscale flaky nickel electrode (nanoNi/Ti) was prepared by a hydrothermal process using hydrazine hydrate as a reduction agent. Its electrocatalytic activity as an electrocatalyst for the electrooxidation of glucose was evaluated in alkaline solutions using cyclic voltammetry (CV), chronoamperometric responses (CA) and electrochemical impedance spectra (EIS). The nanoNi/Ti electrode exhibits significantly high current density of glucose oxidation. A high catalytic rate constant of 1.67×106 cm3 mol?1 s?1 was calculated from amperometric responses on the nanoNi/Ti electrode. Low charge transfer resistances on the nanoNi/Ti in 0.5 M NaOH containing various concentrations of glucose were obtained according to the analysis for EIS. Furthermore, amperometric data show a linear dependence of the current density for glucose oxidation upon glucose concentration in the range of 0.05–0.6 mM with a sensitivity of 7.32 mA cm?2 mM?1. A detection limit of 0.0012 mM (1.2 μM) M glucose was found. Results show that the prepared nanoNi/Ti electrode presents high electrocatalytic activity for glucose oxidation.  相似文献   

12.
The kinetics of OH reactions with 1–4 carbon aliphatic thiols have been investigated over the temperature range 252–430 K. OH radicals were produced by flash photolysis of water vapor at λ > 165 nm and detected by time-resolved resonance fluorescence spectroscopy. All thiols investigated react with OH at nearly the same rate; k(298 K) = 3.2–4.6 × 10?11 cm3 molecule?1 s?1, -Eact = 0.6–1.0 kcal/mol, A = 0.6–1.2 × 10?11 cm3 molecule?1 s?1. CH3SH and CH3SD react with OH at identical rates over the entire temperature range investigated. We conclude that the dominant reaction pathway is addition to the sulfur atom.  相似文献   

13.
Metal tetra-amino phthalocyanine complexes (MTAPc; where M is Co or Mn) were immobilized on screen-printed gold electrodes pre-modified with monolayers of benzylamino groups. The functionalized electrodes were then activated using benzene-1,4-dicarbaldehyde as a linker before MTAPc complexes were immobilized. The surface coverages for the modified electrodes confirmed the perpendicular orientation of the MTAPcs. The apparent electron transfer constant (kapp) for the electrodes is 2.2?×?10?5 cm.s?1 for both CoTAPc and MnTAPc modified electrodes as calculated with data from impedance measurements. The kapp values for the bare and benzylamino modified electrodes were found to be 1.2?×?10?4 cm.s?1 and 4.9?×?10?6 cm.s?1, respectively. The electrocatalysis of the modified electrodes towards detection of H2O2 gave significant peak current densities and electrocatalytic potentials at ?0.28 V and ?0.31 V for the MnTAPc and CoTAPc modified electrodes, respectively.  相似文献   

14.
A method of measuring the kinetics of currents arising at the electron photoemission from a metal into electrolyte solution when affected by the u.v. laser pulses for 10?8 s at the frequency of repetitions 10–25 Hz is described. Measurements have been taken in solutions without acceptors and in those containing N2O and NO2?, NO3? ions as electron acceptors. The rate constants of capture of the solvated electrons by N2O ((6±1)×09 mol?1 s?1) and NO2? ((4.5±1)×109 mol?1 s?1) and the diffusion coefficients of OH-radicals ((1.0±0.3)×10?5 cm2 s?1) and of NO ((1.2±0.3)×10?5 cm2 s?1) are found. The oxidation rate of NO32? has been shown to decrease from 40 cm s?1 in the range of potentials ?0.55 to ?1.0 V. The rate constant of bimolecular recombination of the solvated electrons ((1.3±0.4)×1010 mol?1 s?1) has been found from the dependence of the emitted charge on the light intensity.  相似文献   

15.
A mild and simple synthesis process for large-scale vanadium redox flow batteries (VRFBs) energy storage systems is desirable. A graphite felt/MnO2 (GF-MNO) composite electrode with excellent electrocatalytic activity towards VO2+/VO2+ redox couples in a VRFB was synthesized by a one-step hydrothermal process. The resulting GF-MNO electrodes possess improved electrochemical kinetic reversibility of the vanadium redox reactions compared to pristine GF electrodes, and the corresponding energy efficiency and discharge capacity at 150 mA cm?2 are increased by 12.5% and 40%, respectively. The discharge capacity is maintained at 4.8 A h L?1 at the ultrahigh current density of 250 mA cm?2. Above all, 80% of the energy efficiency of the GFMNO composite electrodes is retained after 120 charge-discharge cycles at 150 mA cm?2. Furthermore, these electrodes demonstrated that more evenly distributed catalytic active sites were obtained from the MnO2 particles under acidic conditions. The proposed synthetic route is facile, and the raw materials are low cost and environmentally friendly. Therefore, these novel GFMNO electrodes hold great promise in large-scale vanadium redox flow battery energy storage systems.  相似文献   

16.
The lineshape function for the S0 → T1 absorption in 1,4-dibromonaphthalene (DBN) is analyzed in terms of exchange theory. It is shown that the dominant optical dephasing mechanism for the electric dipole transition to the k = 0 state in the band results from the absorption and emission of a low energy optic phonon. This process dephases the optical absorption because of frequency differences of the phonon in the ground and excited state. In addition, it is shown how to extract the energy of the phonon responsible for dephasing, the phonon absorption rate, and the lifetime in the phonon promoted state from the data. The analysis of the data for DBN shows that very little dephasing of the optical transition occurs before ≈ 15 K but from 15 K to ≈ 40 K the singlet-triplet transitions to site I (20192 cm?1) and site II (20245 cm?1) are dephased by absorption and emission of an ≈ 38 cm?1 and 45 cm?1 phonon respectively. The phonon absorption rates by the k = 0 state in the exciton band are similar for both sites being 5 × 106 s?1 and 3 × 105 s?1 at 4 K and 7 × 1011 s?1 and 4 × 1011 s?1 at 30 K for site I and II respectively. Finally, the lifetimes in the phonon promoted state for sites I and II are 0.23 and 0.28 ps over the range 15–40 K.  相似文献   

17.
《Analytical letters》2012,45(2):175-192
ABSTRACT

The preparation and electrochemical characteristics of electrodes modified by cobalt complexes of N, N' - bis(salicylidene)-ethane -1, 2- diamine (salen) are described. A cobalt-salen polymer film modified electrode has strong electro-catalytic effects for the oxidation of ascorbic acid. The anodic peak potential of ascorbic acid shifted negatively for 400 m V. The catalytic reaction rate constant determined by rotating disk experiments is 7.08×105 mol s?1 cm3. The catalytic mechanism and the effect of film thickness are discussed. A sensitive voltammetric response for ascorbic acid was obtained covering a linear range from 1.0×10?6 to 1.0×10?3 mol-L?1 The modified electrode showed good stability and reproducibility. The electrode was used to the determination of ascorbic acid in fruit juices and showed promising results compared with conventional methods. The electro-catalytic effect of several metal-salen complexes and a similar Schiff base derivative for ascorbic acid was compared.  相似文献   

18.
In this study, direct electron transfer (ET) has been achieved between an immobilised non-symbiotic plant haemoglobin class II from Beta vulgaris (nsBvHb2) and three different screen-printed carbon electrodes based on graphite (SPCE), multi-walled carbon nanotubes (MWCNT-SPCE), and single-walled carbon nanotubes (SWCNT-SPCE) without the aid of any electron mediator. The nsBvHb2 modified electrodes were studied with cyclic voltammetry (CV) and also when placed in a wall-jet flow through cell for their electrocatalytic properties for reduction of H2O2. The immobilised nsBvHb2 displayed a couple of stable and well-defined redox peaks with a formal potential (E°′) of ?33.5 mV (vs. Ag|AgCl|3 M KCl) at pH 7.4. The ET rate constant of nsBvHb2, k s, was also determined at the surface of the three types of electrodes in phosphate buffer solution pH 7.4, and was found to be 0.50 s?1 on SPCE, 2.78 s?1 on MWCNT-SPCE and 4.06 s?1 on SWCNT-SPCE, respectively. The average surface coverage of electrochemically active nsBvHb2 immobilised on the SPCEs, MWCNT-SPCEs and SWCNT-SPCEs obtained was 2.85?×?10?10 mol cm?2, 4.13?×?10?10 mol cm?2 and 5.20?×?10?10 mol cm?2. During the experiments the immobilised nsBvHb2 was stable and kept its electrochemical and catalytic activities. The nsBvHb2 modified electrodes also displayed an excellent response to the reduction of hydrogen peroxide (H2O2) with a linear detection range from 1 μM to 1000 μM on the surface of SPCEs, from 0.5 μM to 1000 μM on MWCNT-SPCEs, and from 0.1 μM to 1000 μM on SWCNT-SPCEs. The lower limit of detection was 0.8 μM, 0.4 μM and 0.1 μM at 3σ at the SPCEs, the MWCNT-SPCEs, and the SWCNT-SPCEs, respectively, and the apparent Michaelis–Menten constant, $ {\hbox{K}}_{\rm{M}}^{\rm{app}} $ , for the H2O2 sensors was estimated to be 0.32 mM , 0.29 mM and 0.27 mM, respectively.  相似文献   

19.
The analysis of the variation with incident flux of the time dependence of the delayed fluorescence in conjunction with the determination of the absolute ground state-first excited triplet absorption coefficients at room temperature, yields the value of γtot = (5.5 ± 2.0) × 10?12 cm3 s?1, for the total triplet-triplet annihilation rate constant in 1,4-dibromonaphthalene crystals. The one-dimensional mutual annihilation rate constant for the triplet exciton motion restricted to linear chains along the crystal c axis is γ1tot = (1.0 ± 0.4) × 103 cm s?1. The results are discussed in terms of recent theories of mutual annihilation of triplets in one-dimensional systems.  相似文献   

20.
Self‐organized Ti/TiO2 nanotubular array electrodes were prepared by electrochemical anodization and used to monitor the reduction of the hair dye basic brown 17 (BB17) at a potential of ?0.60 V vs. Ag/AgCl. Analytical curves were obtained from 1.0×10?6 to 8.0×10?5 mol L?1 with a detection limit of 1.3×10?7 mol L?1 by using the best experimental conditions, linear scan voltammetry at pH 6, scan rate=60 mV s?1, and accumulation time=5 min. The detection system performance was not interfered by other hair dyes and successfully used to determine the dye in tap water samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号