首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Of all materials, silicon has the highest capacity to store lithium, and is being developed as an electrode for lithium-ion batteries. Upon absorbing a large amount of lithium, the electrode swells greatly, with a volumetric change up to 300%. The swelling is inevitably constrained in practice, often leading to stress and fracture. Evidence has accumulated that the swelling-induced stress can be partially relieved by plastic flow, and that electrodes of small feature sizes can survive many cycles of lithiation and delithiation without fracture. Here we simulate a particle of an electrode subject to cyclic lithiation and delithiation. A recently developed theory of concurrent large swelling and finite-strain plasticity is used to co-evolve fields of stress, deformation, concentration of lithium, and chemical potential of lithium. We identify three types of behavior. When the yield strength is high and the charging rate is low, the entire particle deforms elastically in all cycles. When the yield strength is low and the charging rate is high, the particle (or part of it) undergoes cyclic plasticity. Under intermediate conditions, the particle exhibits the shakedown behavior: part of the particle flows plastically in a certain number of initial cycles, and then the entire particle remains elastic in subsequent cycles. We discuss the effect of the three types of behavior on the capacity and the electrochemical efficiency.  相似文献   

2.
Lithiation-induced plasticity is a key factor that enables Si electrodes to maintain long cycle life in Li-ion batteries. We study the plasticity of various lithiated sili-con phases based on first-principles calculations and iden-tify the linear dependence of the equivalent yield stress on the hydrostatic pressure. Such dependence may cause the compression-tension asymmetry in an amorphous Si thin film electrode from a lithiation to delithiation cycle, and leads to subsequent ratcheting of the electrode after cyclic lithiation. We propose a yield criterion of amorphous lithi-ated silicon that includes the effects of the hydrostatic stress and the lithiation reaction. We further examine the micro-scopic mechanism of deformation in lithiated silicon under mechanical load, which is attributed to the flow-defects mediated local bond switching and cavitation. Hydrostatic compression confines the flow defects thus effectively strength-ens the amorphous structure, and vice versa.  相似文献   

3.
Oxide coatings have been shown to improve the cyclic performance of high-energy density electrode materials such as Si. However, no study exists on the mechanical characterization of these oxide coatings. Here, thin film SiO2 electrodes are cycled under galvanostatic conditions (at C/9 rate) in a half-cell configuration with lithium metal foil as counter/reference electrode, with 1 M LiPF6 in ethylene carbonate, diethyl carbonate, dimethyl carbonate solution (1:1:1, wt%) as electrolyte. Stress evolution in the SiO2 thin film electrodes during electrochemical lithiation/delithiation is measured in situ by monitoring the substrate curvature using a multi-beam optical sensing method. Upon lithiation SiO2 undergoes extensive inelastic deformation, with a peak compressive stress of 3.1 GPa, and upon delithiation the stress became tensile with a peak stress of 0.7 GPa. A simple plane strain finite element model of Si nanotube coated with SiO2 shell was developed to understand the mechanical response of the core-shell type microstructures under electrochemical cycling; measured stress response was used in the model to represent SiO2 constitutive behavior while Si was treated as an elastic-plastic material with concentration dependent mechanical properties obtained from the literature. The results reported here provide insights and quantitative understanding as to why the highly brittle SiO2 coatings are able to sustain significant volume expansion (300%) of Si core without fracture and enhance cyclic performance of Si reported in the literature. Also, the basic mechanical properties presented here are necessary first step for future design and development of durable Si/SiO2 core shell structures or SiO2-based electrodes.  相似文献   

4.
The material properties of an oxygen-free high thermal conductivity (OFHC) film with a thickness of 0.1 mm were evaluated at strain rates ranging from 10−3/s to 103/s using a high-speed material micro-testing machine (HSMMTM). The high strain-rate material properties of thin films are important especially for an evaluation of the structural reliability of micro-formed parts and MEMS products. The high strain-rate material testing methods of thin films, however, have yet to be established to the point that the testing methods of larger specimens for electronics, auto-body, train, ship, and ocean structures are. For evaluation, a new type of HSMMTM was developed to conduct high-speed tensile tests of thin films. This machine is capable of testing at a sufficiently high tensile speed with an electromagnetic actuator, a novel gripping mechanism, and an accurate load measurement system. The OFHC copper film shows high strain-rate sensitivity in terms of the flow stress, fracture elongation, and strain hardening. These measures increase as the tensile strain rate increases. The rate-dependent material properties of an OFHC copper film are also compared with those of a bulk OFHC copper sheet with a thickness of 1 mm. The flow stress of an OFHC copper film is relatively low compared to that of a bulk OFHC copper sheet in the entire range of strain rates, while the fracture elongation of an OFHC copper film is much larger than that of a bulk OFHC copper sheet. A quantitative comparison would provide material data at high strain rates for the design and analysis of micro-appliances and different types of micro-equipment.  相似文献   

5.
The influence of intrinsic stress gradient on the mode-I fracture of thin films with various thicknesses fabricated for Microelectromechanical Systems (MEMS) was investigated. The material system employed in this study was hydrogen-free tetrahedral amorphous diamond-like carbon (ta-C). Uniform gauge microscale specimens with thicknesses 0.5, 1, 2.2, and 3 μm, containing mathematically sharp edge pre-cracks were tested under mode-I loading in fixed grip configuration. The effective opening mode fracture toughness, as calculated from boundary force measurements, was 4.25±0.7 MPa√m for 0.5-μm thick specimens, 4.4±0.4 MPa√m for 1-μm specimens, 3.74±0.3 MPa√m for 2.2-μm specimens, and 3.06±0.17 MPa√m for 3-μm specimens. Thus, the apparent fracture toughness decreased with increasing film thickness. Local elastic property measurements showed no substantial change as a function of film thickness, which provided evidence for the stability of the sp2/sp3 carbon binding stoichiometry in films of different thicknesses. Detailed experiments and finite element analysis pointed out that the dependence of the effective fracture toughness on specimen thickness was due to the intrinsic stress gradient developed during fabrication and post-process annealing. This stress gradient is usually unaccounted for in mode-I fracture experiments with thin films. Thicker films, fabricated from multiple thin layers, underwent annealing for extended times, which resulted in a stress gradient across their thickness. This stress gradient caused an out-of-plane curvature upon film release from its substrate and, thus, combined bending and tensile mode-I loading at the crack tip under in-plane forces. Since the bending component cannot be isolated from the applied boundary force measurements, its contribution, becoming important for thick films, remains unaccounted for in the calculation of the critical stress intensity factor, thus resulting in reduced apparent fracture toughness that varies with film thickness and curvature. It was concluded that in the presence of a stress gradient, accounting only for the average intrinsic stresses could lead in an overestimate of the fracture resistance of a brittle film. Under these considerations the material fracture toughness of ta-C, as determined from specimens with negligible curvature, is KIC=4.4±0.4 MPa√m.  相似文献   

6.
Studies on channel cracking are generally limited to elastic films on elastic or inelastic substrates. There are important applications were the cracking process involves extensive plasticity in both the film and substrate, however. In this work steady-state channel cracking in inelastic thin-film bilayers undergoing large-scale yielding from thermal or mechanical loading is studied with the aid of a plane-strain FEA. The plasticity of the film and substrate, represented by a Ramberg–Osgood constitutive law, each increases the energy release rate (ERR) relative to the linearly-elastic case. This effect is more pronounced under mechanical loading where the entire bilayer undergoes large-scale yielding. To help assess the analytic approach some fragmentation tests are performed using a well-bonding epoxy/aluminum system. The analysis reproduced well the observed dependence of crack initiation strain on film thickness.Ultra-thin films may be well represented by an elastic-perfectly plastic response. For such films on a flexible support the ERR remains fixed as the applied strain exceeds the yield strain of the film. Accordingly, a critical coating thickness exists below which no channel cracking is possible. The explicit relations and graphical data presented may be used for optimal design of such structures against premature failure as well as for determining fracture energy of ductile thin films.  相似文献   

7.
The cyclic stress in lithium-ion battery electrodes induced by repeated charge and discharge cycles causes electrode degradation and fracture, resulting in reduced battery performance and lifetime. To investigate electrode mechanics as a function of electrochemical cycling, we utilize digital image correlation (DIC) to measure the strains that develop in lithium-ion battery electrodes during lithiation and delithiation processes. A composite graphite electrode is cycled galvanostatically (with constant current) in a custom battery cell while optical images of the electrode surface are captured in situ. The strain in the electrode is computed using an in-house DIC code. On average, an unconstrained composite graphite electrode expands 1.41 % during lithiation and contracts 1.33 % during delithiation. These strain values compare favorably with predictions based on the elastic properties of the composite electrode and the expansion of graphite-lithium intercalation compounds (G-LICs). The establishment of this experimental protocol will enable future studies of the relationship between electrode mechanics and battery performance.  相似文献   

8.
In this work, the fracture of spin coated SU-8 epoxy thin films was investigated under mode I loading using in situ optical experiments on specimens with double edge notched tensile geometry. A method was developed to fabricate 3 μm thick SU-8 films with tapered Chevron type notches using a combination of electron beam and ultra-violet lithography techniques. Subsequently, through speckle patterning under tensile loading, the local deformation fields around the crack tip were extracted using digital image correlation. Since the notches were tapered through the thickness, a crack nucleated from them and grew stably until it spanned the entire thickness before propagating unstably leading to catastrophic failure. As SU-8 underwent brittle fracture with no evidence of a large process zone, the critical energy release rate, J I C was computed from deformation fields, and was found to be 106.6 ± 12.03 J /m 2. As the film thickness was small compared to lateral dimensions, assuming plane stress conditions, the critical stress intensity factor was calculated as 0.57 ± 0.03 MPa\(\sqrt {m}\). Furthermore, to assess the validity of the experimental method, a finite element simulation on the exact specimen geometry was conducted with experimentally evaluated far field displacement boundary conditions. The strain fields and J-integral value obtained from the simulation were in good agreement with the experimental results, implying the validity of the in situ experimental method proposed given the challenges of small scale specimens. Furthermore, using fractography and optical imaging it was confirmed that the unstable crack propagation started once the crack front reached full thickness, thereby providing sharp crack at the time of failure, which is necessary for brittle materials for valid fracture toughness experiment. It is expected that the proposed methods of specimen preparation and fracture experiments on microscale polymer thin films can be used on other materials.  相似文献   

9.
As an ideal anode material, silicon has the highest lithium-ion capacity in theory, but the broader application is limited by the huge volumetric strain caused by lithium insertion and extraction. To better understand the physical process and to resolve the related reliability issue, enormous efforts have been made. Recent experiments observed sharp reaction fronts in both crystalline and amorphous silicon during the first lithiation half-cycle. Such a concentration profile indicates that the process is likely to be reaction limited. Based on this postulation, a phase-field model is developed and implemented into a finite-element code to simulate the coupled large inelastic deformation and motion of the reaction front in a silicon electrode. In contrast to most existing models, the model treats both volumetric and deviatoric inelastic deformation in silicon as a direct consequence of the lithiation at the reaction front. The amount of deviatoric deformation is determined by using the recently developed kinetic model of stress-induced anisotropic reaction. By considering the role of stress in the lithiation process, this model successfully recovers the self-limiting phenomenon of silicon electrodes, and relates it to the local geometry of electrodes. The model is also used to evaluate the energy-release rate of the surface crack on a spherical electrode, and the result suggests a critical size of silicon nanoparticles to avert fracture. As examples, the morphology evolution of a silicon disk and a Si nanowire during lithiation are also investigated.  相似文献   

10.
Laser induced stress waves are used to characterize intrinsic interfacial strength of thin films under both tensile and mixed-mode conditions. A short-duration compressive pulse induced by pulsed-laser ablation of a sacrificial layer on one side of a substrate is allowed to impinge upon a thin test film on the opposite surface. Laser-interferometric measurements of test film displacement enable calculation of the stresses generated at the interface. The tensile stress at the onset of failure is taken to be the intrinsic tensile strength of the interface. Fused-silica substrates, with their negative nonlinear elasticity, cause the compressive stress wave generated by the pulse laser to evolve a decompression shock, critical for generation of the fast fall times needed for significant loading of surface film interfaces. By allowing the stress pulse to mode convert as it reflects from an oblique surface, a high amplitude shear wave with rapid fall time is generated and used to realize mixed-mode loading of thin film interfaces. We report intrinsic strengths of an aluminum/fused silica interface under both tensile and mixed-mode conditions. The failure mechanism under mixed-mode loading differs significantly from that observed under pure tensile loading, resulting in a higher interfacial strength for the mixed-mode case. Inferred strengths are found to be independent, as they should be, of experimental parameters.  相似文献   

11.
We have developed a microbeam bending technique for determining elastic-plastic, stress-strain relations for thin metal films on silicon substrates. The method is similar to previous microbeam bending techniques, except that triangular silicon microbeams are used in place of rectangular beams. The triangular beam has the advantage that the entire film on the top surface of the beam is subjected to a uniform state of plane strain as the beam is deflected, unlike the standard rectangular geometry where the bending is concentrated at the support. To extract the average stress-strain relations for the film, we present a method of analysis that requires computation of the neutral plane for bending, which changes as the film deforms plastically. This method can be used to determine the elastic-plastic properties of thin metal films on silicon substrates up to strains of about 1%.Utilizing this technique, both yielding and strain hardening of Cu thin films on silicon substrates have been investigated. Copper films with dual crystallographic textures and different grain sizes, as well as others with strong 〈1 1 1〉 textures have been studied. Three strongly textured 〈1 1 1〉 films were studied to examine the effect of film thickness on the deformation properties of the film. These films show very high rates of work hardening, and an increase in the yield stress and work hardening rate with decreasing film thickness, consistent with current dislocation models.  相似文献   

12.
We report parametric studies of elastic wave generation by a pulsed laser and associated spalling of thin surface films by the corresponding high stresses. Two different substrate materials, single crystal Si (100) and fused silica, are considered. Spallation behavior of Al thin films is investigated as a function of substrate thickness, film thickness, laser energy, and various parameters governing the source. Surface displacement due to the stress wave is measured by Michaelson interferometry and used to infer the stresses on the film interface. Consistent with previous studies, the maximum stress in the substrate and at the film/substrate interface increases with increasing laser fluence. For many of the conditions tested, the substrate stress is large enough to damage the Si. Moreover, the maximum interface stress is found to increase with increasing film thickness, but decrease with increasing substrate thickness due to geometric attenuation. Of particular significance is the development of a decompression shock in the fused sillica substrates, which results in very high tensile stresses at the interface. This shock enhances the failure of thin film interfaces, especially in thicker samples.  相似文献   

13.
A combined experimental/analytical work is carried out to elucidate the fracture resistance of a thin, hard coating bonded to a semi-infinite substrate due to indentation by a cylindrical surface. The bending of the coating under the softer substrate induces concentrated tensile stress regions at the lower and upper surfaces of the coating, from which cracks may ensue. The evolution of such damage in a model transparent system (glass/polycarbonate) is viewed in situ from below and from the side of the specimen. The critical load needed to initiate a crack on the lower coating surface generally increase proportionally to the coatings thickness, d. An interesting departure from this trend occurs for thin coatings, where the fracture load, although marred by a large scatter, increases somewhat with decreasing d. The fracture data for the upper coating surface are limited to relatively thick coatings due to the recurrence of premature failure from the coating edges. The behavior in this range is similar to that for the lower surface crack, albeit with an order of magnitude greater fracture resistance.A fracture mechanics analysis in conjunction with FEM is performed to elucidate the stress intensity factors responsible for crack propagation. A crack normal to the coating surface is assumed to emanate either from the lower or upper surface of the coating. A major feature of the solution is the occurrence of a bending-induced compression stress field over a region ahead of the crack tip. This effect, which become more dominant as the ratio between the contact length and the coating thickness is increased, tends to delay the onset of crack propagation, especially for the lower surface crack. Consequently, in applications associated with large indenters, thin and/or tough coatings and stiff substrates, cracking from the upper coating surface may precede that from the lower surface. An interesting feature of this crack shielding mechanism is that when the coating surface contains a distribution of flaws rather than a single crack, small flaws in this population may be more detrimental than large ones. Incorporation of these aspects into the analysis leads to a good correlation with the test results. In the special case of line loading, which constitutes a lower bound for the critical loads, a closed-form, approximate solution for the stress intensity factors or the critical loads are obtained.Plane-strain indentation, although less common than spherical indentation, allows for characterizing the fracture resistance of opaque films through observation from the specimen edge. This approach is not easily implemented to thin films (i.e., less than about a hundred microns), however.  相似文献   

14.
混凝土拉伸软化曲线折线近似的逆解方法   总被引:6,自引:0,他引:6  
王宝庭  徐道远 《力学学报》2001,33(4):535-541
研究基于Hillerborg的虚拟裂纹模型,利用有限元分析方法,求得折线近似的拉伸软化曲线的逆解方法。对弹性模量,初始开裂应力的决定方法进行了研究。以双直线模型的计算结果为算例进行了逆推分析,算例符合得很好。也较好地从实验得到的荷载位移曲线再现了拉伸软化曲线。这对于研究混凝土的断裂能,尺寸效应等问题很具意义。  相似文献   

15.
The mechanical behavior of thin elastic films deposited onto structural alloys plays a critical role in determining film durability. This paper presents analysis of an impression experiment designed to evaluate some of the relevant properties of these films. The modeling provides quantitative strain information which can be used to estimate the fracture toughness of the film, the static friction coefficient of the surface and the constitutive behavior of the substrate. Results are presented for radial and circumferential strain distributions in the film relevant to the interpretation of cracking patterns. Additionally, load-displacement curves are provided that may be used to evaluate the plastic properties of the substrate. To facilitate estimates of the film cracking strain through correlation with experiments, the radial strain distributions are presented as functions of impression depth, yield strain and hardening exponent.  相似文献   

16.
纳米压痕法测磁控溅射铝薄膜屈服应力   总被引:1,自引:0,他引:1  
为了在考虑残余应力下测量出磁控溅射铝薄膜的屈服应力,提出了一种实验测量方法,通过曲率测试法和球形压头纳米压痕法测出磁控溅射铝薄膜的屈服应力.建立球形压痕力学模型,并用ANSYS对球形压痕进行力学有限元仿真,利用直流磁控溅射技术在硅基上淀积一层1 μm厚的铝薄膜,首先通过曲率测试法测量膜内等双轴残余应力,再利用最小二乘曲线拟合法从薄膜/基底系统的球形压头纳米压痕实验数据中提取出铝薄膜的屈服应力,测得磁控溅射铝薄膜的屈服应力为371 MPa.该方法也可以用来研究其他材料的薄膜和小体积材料的力学特性.  相似文献   

17.
本文采用动态金茨堡-朗道(DGL)方程研究了薄膜厚度与错配应变对 取向单畴外延PbTiO3(PTO)铁电薄膜相结构与稳定性的影响。结合平面内松弛应变(等效应变)、表面效应与退极化场等机电耦合边界条件,通过数值求解DGL方程获得外延单畴铁电薄膜错配应变-厚度相图和错配应变-温度相图。数值分析结果显示,由于生成的界面位错松弛了薄膜内错配应变,在理论高应变区相图与传统分析结果有较大差别,文中发现在更广的理论错配拉应变区出现稳定的四方相(c相)结构和单斜相(r相)结构。结果也显示,随着薄膜厚度的减小,表面效应与退极化效应会把顺电相扩展到更低温度区域,从而压缩稳定的铁电相存在的温度区域。  相似文献   

18.
This paper investigates the thermal elastic fields in the hollow circular overlay fully bonded to a rigid substrate, which is subjected to a temperature change. Following our previous work for a solid circular overlay/substrate system (Yuan and Yin, Mech. Res. Commun. 38, 283–287, 2011), this paper presents a closed form approximate solution to the axisymmetric boundary value problem using the plane assumption, whose accuracy is verified by the finite element models. When the inner radius is reduced to zero, the present solution recovers the previous solution. When the outer radius approaches infinite, the solution provides the elastic fields for a tiny hole in the overlay. The effects of thickness and width of the overlay are investigated and discussed. When a circular crack initiates in a solid circular overlay, the fracture energy release rate is investigated. This solution is useful for thermal stress analysis of hollow circular thin film/substrate systems and for fracture analysis of spiral cracking in the similar structures.  相似文献   

19.
The uniaxial tension behavior of polycrystalline thin films, in which all grain boundaries (GBs) are penetrable by dislocations, is investigated by two-dimensional discrete dislocation dynamics (DDD) method with a penetrable dislocation-GB interaction model. In order to study thickness effect on the tensile strength of thin films with and without surface treatment, three types of thin films are comparatively considered, including the thin films without surface treatment, with surface passivation layers (SPLs) of nanometer thickness and with surface grain refinement zones (SGRZs) consisting of nano-sized grains. Our results show that thickness effects and their underlying dislocation mechanisms are quite distinct among different types of thin films. The thicker thin films without surface treatment are stronger than the thinner ones; however, opposite thickness effects are captured in the thin films with SPLs or SGRZs. Moreover, the underlying dislocation mechanisms of the same thickness effects of thin films with SPLs and SGRZs are different. In the thin films with SPLs, the thickness effect is caused by the sharp increase of dislocation density near the film-passivation interface, while it is mainly due to the sharp decrease of dislocation density within the refined surface grains of the thin films with SGRZs. No matter in what type of thin films, thickness effect gradually disappears when the number of grains in the thickness direction is large enough. Our analysis reveals that general mechanism of those thickness effects lies in the competition between the exterior surface-constraint and interior GB-constraint on gliding dislocations.  相似文献   

20.
詹思远  郑百林  张锴 《力学季刊》2020,41(1):136-146
柱形结构电极是近年来使用最为广泛的锂电池电极结构之一.本文以硅材料细长柱形电极为例,研究了充电电流大小、电极长径比、初始裂纹长度以及断裂韧性对于电极的屈曲现象和裂纹扩展现象发生时间的影响.计算结果表明,屈曲与裂纹扩展现象出现的先后顺序与充电电流大小无关;具有小的长径比,大的初始裂纹长度以及较小断裂韧性的电极,裂纹扩展比屈曲现象更早发生.对于硅材料,不同长径比的电极具有不同临界断裂韧性值,当材料的断裂韧性小于该临界值,在锂化过程中裂纹扩展会先于屈曲现象发生;该临界断裂韧性值随初始裂纹长度的增加而增加.本文的结论对于电极的结构设计以及材料选取具有一定指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号