首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
以天然高分子木质素为原料,通过亲核取代反应将木质素改性成为大分子引发剂,引发偶氮苯单体的原子转移自由基聚合(ATRP),得到一系列木质素基光响应聚合物.接枝后的木质素的热稳定性明显改善,且平均接枝率达到72.8%时才能表现出液晶行为.小角X射线散射和偏光显微镜的结果表明所形成的液晶相为近晶C型,层间距为3.21nm.在此基础上,用紫外-可见吸收光谱(UV-Vis)对木质素基液晶聚合物的光响应性进行研究,发现溶液中的光响应性比膜状态的光响应速率快.在紫外光的辐照下,木质素基液晶聚合物表现出快速的光致液晶-各向同性相变行为.  相似文献   

2.
彭亚婷  王涛  李杭  杨荣  李锦春 《高分子学报》2020,(3):267-276,I0003
以4,4’-双(6-羟基己氧基)联苯(BHHBP)、4,4’-双(6-羟基己氧基)偶氮苯(BHHAB)为液晶基元,利用苹果酸二乙酯(DM)和苯基丁二酸(PSA)采用无规共聚,合成了侧基含羟基的偶氮苯液晶共聚酯(Az-LCP).先在液晶态下拉伸取向,然后用六亚甲基二异氰酸酯(HDI)交联制备单畴取向偶氮苯液晶交联网络.通过核磁共振氢谱(1H-NMR)、凝胶渗透色谱(GPC)测试,对合成的Az-LCP进行结构表征,通过示差扫描量热分析(DSC)、X射线衍射(XRD)、偏光光学显微镜(POM)等对其液晶相变行为进行表征,研究了偶氮苯含量、交联密度、薄膜厚度对其光致弯曲行为的影响.结果表明,偶氮苯含量10%,交联12 h的Az-LCP1具有最佳的光致弯曲回复行为.  相似文献   

3.
研究了液晶分子的排列方式对聚合物膜阻隔特性的影响,采用473 nm线偏振光照无定形偶氮液晶聚合物,使其介晶基元发生从无序到有序的取向排列.用膜透射率变化和锥光干涉图表征了分子的取向,其锥光干涉图为粗黑十字,说明在线偏振光下作用下液晶分子取向形成了单相畴沿面内排列的有序态.用金属表面氧化法进一步研究了取向态聚合物膜的阻隔...  相似文献   

4.
利用原子转移自由基聚合(ATRP)技术合成了含不同端基取代基的偶氮苯三臂星形侧链液晶聚合物. 均苯三酚与2-溴异丁酰溴通过酯化反应制备三官能团引发剂, 引发偶氮苯单体6-[4-(4-甲氧基苯基偶氮)酚氧基]己基甲基丙烯酸酯(MMAzo)或6-[4-(4-乙氧基苯基偶氮)酚氧基]己基甲基丙烯酸酯(EMAzo)的ATRP反应. 利用核磁共振氢谱(1H NMR)、凝胶色谱(GPC)、差示扫描量热法(DSC)和偏光显微镜(POM)等手段对星形聚合物进行表征. 星形聚合物的液晶性与相应均聚物相似, 但偶氮苯端基取代基的不同导致星形聚合物的液晶性差别显著. 在紫外/可见光照射下星形聚合物呈现明显的异构化转变.  相似文献   

5.
合成和表征了新型的含有甲氧基偶氮苯液晶基元的3,4,5-三取代苯甲酸衍生物Dn, 研究了结构对其相行为的影响. 结果表明, 在Dn中, 羰基(C=O)和羟基(OH)之间的氢键相互作用存在于结晶态、液晶态和各向同性状态, 在各向同性态时氢键较弱. 通过对其分子结构的调控, 有效地抑制了微相分离和强的分子间的相互作用, 得到了具有单向向列型液晶行为的3,4,5-三取代的苯甲酸衍生物.  相似文献   

6.
采用偏光显微镜在平行光和锥光条件下对液晶聚合物膜内分子的取向排列状态进行了研究,不同取向状态的膜由线偏振光或圆偏振光照射偶氮苯侧链液晶聚合物得到。结果表明,液晶聚合物膜采用线偏振光照射时,偶氮苯介晶基元沿面排列,形成单相畴面内取向态。该取向态的锥光干涉图为位于视场中心的粗黑十字,旋转载物台小于10°,该干涉图即完全退出...  相似文献   

7.
通过聚乙二醇单甲醚钠盐(MPEG-Na)和4-甲氧基-4′-(6-羟基己氧基)偶氮苯钠盐(AZO-Na)与六氯三聚磷腈的分步取代反应,合成了含偶氮苯基团的A3B3六杂臂星型聚合物[NP(MPEG550)(AZO)]3和[NP(MPEG1100)(AZO)]3.采用傅里叶红外光谱(FT-IR)、核磁共振谱(1H-NMR)和凝胶渗透色谱(GPC)手段确证了聚合物的基本结构,所得两种聚合物为接近单分散的多杂臂星型聚合物.采用热分析(DSC)和热台偏光显微镜(POM)研究了两种星型聚合物的热转变行为.结果表明,[NP(MPEG550)(AZO)]3具有可逆的热致液晶转变行为(TS-N=60.5℃;TN-I=104.7℃),为双向性液晶聚合物.而对于[NP(MPEG1100)(AZO)]3,观察不到液晶相转变行为,[NP(MPEG1100)(AZO)]3聚合物中柔性PEG链段含量过高可能导致其偶氮苯链段难局部有序而不能呈现液晶相转变.  相似文献   

8.
新的含T-型二维液晶基元的液晶高分子的合成   总被引:4,自引:0,他引:4  
采用低温溶液聚合方法,以N-(2,5-二羟基苯)亚甲基-4-取代苯胺和不同结构的二酰氯为单体,合成了两类新的高分子。聚合物的液晶行为用DSC、偏光显微镜和X射线衍射进行了表征,发现其中一类为向列型热致液晶高分子,另一类则无液晶性。随单体结构的改变,聚合物的特性粘数、熔点(Tm)和液晶态的清亮点(Ti)均呈现规律性变化。  相似文献   

9.
侧链型偶氮聚合物液晶在不同波长激发条件下的光致取向   总被引:4,自引:0,他引:4  
合成了聚甲基丙烯酸 (6 [4 (4 氰基偶氮苯 )苯氧基 ]己酯 ) (Poly(6 [4 (4 cyanophenylazo)phenoxy]hexylmethacrylate) (PM6ABCN) ) ,采用溶液挥发法在玻璃载片上成膜 ,研究了薄膜样品在Tg 温度以下的光致取向 .用波长分别为 36 6、40 0和 436nm的偏振光照射 ,发现PM6ABCN薄膜的光致取向过程不仅依赖于光的强度 ,还依赖所使用的偏振光的波长 .在低于Tg 的温度下 ,用波长为 40 0nm ,功率为 2 0mW cm2 的光照射 10 0s可以使样品的取向达到饱和 ,而用 36 6nm的光导致的取向程度要小于 40 0nm和 436nm的光 ,因为 36 6nm的光会在稳态时产生更多数目的cis异构体  相似文献   

10.
以4,4'-(α,ω-辛二酰氧)二苯甲酰氯(M1)、2,5-双[4-'(对癸氧基苯基)苯甲酰氧基]对苯二酚(M2)和顺式-4,4'-双(4-羟基苯基偶氮)二苯并-18-冠-6(M3)为单体,通过溶液共缩聚反应,合成了一系列新的含X-型二维液晶基元和顺式-4,4'-双(4-羟基苯基偶氮)二苯并-18-冠-6冠醚环的主链犁液晶共聚酯.单体1(M1)由对羟基苯甲酸和辛二酰氯,通过酯化和取代反应制备,单体2(M2)由2,5-二羟基苯醌和对癸氧基苯基苯甲酰氯通过酯化和还原反应制备,单体3(M3)由顺式-二氨基二苯并-18-冠-6和苯酚通过重氮化和偶联反应制备.共聚酯的分子量小高,[η]在0.30~0.39之间.单体的化学结构通过 IR、UV、1H-NMR、MS 和元素分析等方法确证.共聚酯的外观为黄色粉状固体,除共聚酯 CP9 外,室温下不溶于 CHCl3 和 THF 溶剂.共聚酯的性质采用 GPC、[η]、DSC、TG、WAXD 和 POM 等方法进行了研究.发现所有的共聚酯加热到各自的熔融温度以上都能形成液晶态,在液晶态可以观察到近晶相和向列相的典型织构.共聚酯的熔融温度(Tm)和各向同性温度(T1)随共聚酯分子中顺式-4,4'-双(4-羟基苯基偶氮)二苯并-18-冠-6用量的改变呈规律性变化.WAXD 研究进一步证实了共聚酯的液晶性.  相似文献   

11.
The nucleation and initial stages of growth of aluminium oxide deposited on two different polymer surfaces [poly(ethylene terephthalate), (PET) and amorphous polypropylene, (PP)] have been studied by atomic force microscopy (AFM). The permeation of water vapor and oxygen through the films has been measured. The initial stages of the growth of the oxide consisted of separated islands on the polymer surface. Further growth of oxide depends strongly on the surface morphology and chemical nature of the polymer surface. Growth on PET follows a layer‐by‐layer mechanism that maintains the native surface roughness of the polymer substrate. Growth on PP, however, follows an island mode, which leads to an increase in surface roughness. This may be due to a lack of chemical bonding between the polymer and the arriving metal–oxygen particles. The oxide layer on PET grows more densely than on PP, providing superior barrier to gas permeation. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3151–3162, 2000  相似文献   

12.
The diffusion, solubility, and permeability behavior of oxygen and carbon dioxide were studied in amorphous and semicrystalline syndiotactic polystyrene (s‐PS). The crystallinity was induced in s‐PS by crystallization from the melt and cold crystallization. Crystalline s‐PS exhibited very different gas permeation behavior depending on the crystallization conditions. The behavior was attributed to the formation of different isomorphic crystalline forms in the solid‐state structure of this polymer. The β crystalline form was virtually impermeable for the transport of oxygen and carbon dioxide. In contrast, the α crystalline form was highly permeable for the transport of oxygen and carbon dioxide. High gas permeability of the α crystals was attributed to the loose crystalline structure of this crystalline form containing nanochannels oriented parallel to the polymer chain direction. A model describing the diffusion and permeability of gas molecules in the composite permeation medium, consisting of the amorphous matrix and the dispersed crystalline phase with nanochannels, was proposed. Cold crystallization of s‐PS led to the formation of a complex ordered phase and resulted in complex permeation behavior. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2519–2538, 2001  相似文献   

13.
Hydrogen bonding between poly(methyl vinyl ether-co-maleic acid) (PMVE-MA) and poly(vinyl alcohol) (PVOH) has resulted in films with lower oxygen transmission rates (OTR) than pure PVOH. In the range 20-30% (w/w) PMVE-MA, complexation between the two polymers in the blend was maximized, as shown by viscometry, Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) analysis. OTR measurements have shown that the maximum interpolymer complexation ratio also correlates with the lowest OTR values of the resulting film. The improved oxygen barrier properties are believed to be a combination of the relatively intact PVOH crystalline regions as shown with X-ray diffraction (XRD) and a higher degree of hydrogen bonding in the amorphous regions of the PVOH and PMVE-MA films as indicated by glass transition temperature (Tg) shifts. This leads to denser amorphous regions that reduces the rate of gases diffusing through the polymer film, hence the reduced OTR.  相似文献   

14.
The studies on the mechanism and kinetics of formation of a polymer layer on metallic cathodes by electropolymerization of acrylamide, formaldehyde, and N-methylolacrylamide in an aqueous environment are reviewed. A model for the formation of a supramolecular structure of films is described. The coating growth occurs in conditions of continuous synthesis of high- and low-molecular-weight polymer fractions. Removing low-molecular-weight products out of the film results in the formation of a porous structure. The orientation of monomer molecules and growing macrochains along the electric-field lines leads to a perpendicular arrangement of pores and channels with respect to the film surface and to the formation of an ordered crystalline phase of the polymer. The synthesized films exhibit an asymmetric three-layered structure, whose dense barrier layer forms at the metal/polymer film interface. The polymer comprises crystalline and amorphous phases.  相似文献   

15.
The process of micro- and nanolayer coextrusion of polymeric systems with good layer uniformity is described. Coextrusion through a series of layer multiplying die elements has enabled the production of films containing tens to thousands of layers with individual layer thicknesses from the micro- to the nanoscale. Improvements in layer uniformity are discussed through optimization of layer multiplier die design, selection of viscosity matched polymer systems, and incorporation of surface layer capabilities. Design of ‘uneven’ split layer multiplication dies has enabled the coextrusion of layered films with a wide variety of layer thickness distributions having up to a 10× difference in the individual film layer thicknesses. Coextrusion of layered polymer films with individual layer thicknesses down to the nanoscale has resulted in the production of novel systems with improved properties. Nanolayered polymer films were utilized to develop an all-plastic polymer laser, to fabricate gradient refractive index lenses, and to investigate gas barrier enhancement of crystalline polymer nanolayers confined to induce a high aspect ratio, in-plane, single-crystal-like lamellar structure.  相似文献   

16.
Molecular beams were used to grow amorphous and crystalline H(2)O films and to dose HCl upon their surface. The adsorption state of HCl on the ice films was probed with infrared spectroscopy. A Zundel continuum is clearly observed for exposures up to the saturation HCl coverage on ice upon which features centered near 2530, 2120, 1760, and 1220 cm(-1) are superimposed. The band centered near 2530 cm(-1) is observed only when the HCl adlayer is in direct contact with amorphous solid water or crystalline ice films at temperatures as low as 20 K. The spectral signature of solid HCl (amorphous or crystalline) was identified only after saturation of the adsorption sites in the first layer or when HCl was deposited onto a rare gas spacer layer between the HCl and ice film. These observations strongly support conclusions from recent electron spectroscopy work that reported ionic dissociation of the first layer HCl adsorbed onto the ice surface is spontaneous.  相似文献   

17.
Summary: Highly crystalline ferroelectric polymer films [vinyidene fluoride and trifluoroethylene, β‐P(VDF‐TrFE), 260–15 nm thick] were characterized with FTIR reflectance‐transmission microspectroscopy (FTIR‐RTM) mapping technique (400 µm × 400 µm spatial resolution). The amorphous and crystalline fractions were identified locally. FTIR‐RTM maps (1 cm2 area) provided a unique in‐depth view of the ultrathin films. Lower film thickness suppressed growth of the crystalline phase. Increased content of amorphous phase lead to non‐uniform films with degraded ferroelectric behavior.

FTIR‐RTM maps of the distribution of the amorphous phase in the 80 and 35 nm films.  相似文献   


18.
Unoriented thin films of phenylphosphine oxide-containing poly(arylene ether)s were exposed to low Earth orbit aboard the space shuttle Atlantis (STS-51) as part of a flight experiment designated Limited Duration Candidate Exposure (LDCE 4–5). The samples were exposed to primarily atomic oxygen (!10,\7×1019 atoms/cm2). Based on post-flight analyses using atomic force microscopy, X-ray photoelectron spectroscopy, gel permeation chromatogrpahy and weight loss data, it was proposed that atomic oxygen exposure of these materials produces a phosphate layer at the surface of the samples, apparently by the reaction of atomic oxygen with the phosphorus in the polymer backbone. Ground-based oxygen plasma exposure experiments have previously shown that this phosphate layer provides a barrier against further attack by atomic oxygen [1]. The results obtained from these analyses compare favorably with those obtained from samples exposed to an oxygen plasma in ground-based exposure experiments [1]. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
The thermal oxidative stability and the effect of water on gas transport and mechanical properties of blends of polyamide 6 (PA6) with ethylene‐co‐vinyl alcohol (EVOH) and EVOH modified with carboxyl groups (EVOH‐COOH) have been investigated. The presence of EVOH reduces water vapor and oxygen gas permeability of polyamide, as well as small amounts of EVOH‐COOH further improve barrier properties, especially to oxygen. This has been explained in terms of improved interactions of the blend constituents in the amorphous phase, due to ionic linkages between the polyamide amino groups and the carboxyls of modified EVOH. The permeation to gases was found to increase with the amount of sorbed water. The morphology of the samples was found to have an effect on barrier properties, as the presence of EVOH causes the PA6 α crystalline form to increase, lowering the permeability to oxygen and water vapor. Mechanical properties are strongly affected by water sorption, as tensile modulus and strength decrease with increasing water content. Chemiluminescence (CL), infrared spectroscopy (FTIR), and tensile test were employed in order to assess the correlation between chemical composition and the thermal oxidative stability of the films aged at 110 °C in air. CL experiments suggest that the presence of EVOH and EVOH‐COOH efficiently inhibits the formation of peroxidized species during the processing, and increases the thermal oxidative stability of the films. Infrared spectroscopy showed a build‐up of carbonyl absorption in the range 1700–1780 cm?1, due to the formation of oxidation products, which is greater in the case of the pure polymer. Tensile tests on films revealed a reduction in ductility as a result of ageing for neat PA6, whereas in comparison the blends exhibit a far better long‐term stability. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 840–849, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号