首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
2.
The appearance of the fermion condensation, which can be compared to the Bose-Einstein condensation, in different Fermi liquids is considered; its properties are discussed; and a large amount of experimental evidence in favor of the existence of the fermion condensate (FC) is presented. We show that the appearance of FC is a signature of the fermion condensation quantum phase transition (FCQPT), which separates the regions of normal and strongly correlated liquids. Beyond the FCQPT point, the quasiparticle system is divided into two subsystems, one containing normal quasiparticles and the other, FC, localized at the Fermi level. In the superconducting state, the quasiparticle dispersion in systems with FC can be represented by two straight lines, characterized by effective masses M FC * and M L * and intersecting near the binding energy E0, which is of the order of the superconducting gap. The same quasiparticle picture and the energy scale E0 persist in the normal state. We demonstrate that fermion systems with FC have features of a “quantum protectorate” and show that strongly correlated systems with FC, which exhibit large deviations from the Landau Fermi liquid behavior, can be driven into the Landau Fermi liquid by applying a small magnetic field B at low temperatures. Thus, the essence of strongly correlated electron liquids can be controlled by weak magnetic fields. A reentrance into the strongly correlated regime is observed if the magnetic field B decreases to zero, while the effective mass M* diverges as \(M^ * \propto {1 \mathord{\left/ {\vphantom {1 {\sqrt B }}} \right. \kern-\nulldelimiterspace} {\sqrt B }}\). The regime is restored at some temperature \(T^ * \propto \sqrt B \). The behavior of Fermi systems that approach FCQPT from the disordered phase is considered. This behavior can be viewed as a highly correlated one, because the effective mass is large and strongly depends on the density. We expect that FCQPT takes place in trapped Fermi gases and in low-density neutron matter, leading to stabilization of the matter by lowering its ground-state energy. When the system recedes from FCQPT, the effective mass becomes density independent and the system is suited perfectly to be conventional Landau Fermi liquid.  相似文献   

3.
It has been shown that the magnetic-field-induced transition from a non-Fermi-liquid state to a Fermi liquid state in the Tl2Ba2CuO6 + x high-temperature superconductor is similar to a transition observed in heavy fermion metals. This behavior is explained in the theory of the Fermi condensate quantum-phase transition implying the existence of Landau quasiparticles. The Fermi condensate quantum-phase transition can be considered as a universal cause of the strongly correlated behavior observed in various metals and liquids such as high-temperature superconductors, heavy fermion metals, and two-dimensional Fermi systems.  相似文献   

4.
Strongly correlated Fermi systems are among the most intriguing, best experimentally studied and fundamental systems in physics. There is, however, lack of theoretical understanding in this field of physics. The ideas based on the concepts like Kondo lattice and involving quantum and thermal fluctuations at a quantum critical point have been used to explain the unusual physics. Alas, being suggested to describe one property, these approaches fail to explain the others. This means a real crisis in theory suggesting that there is a hidden fundamental law of nature. It turns out that the hidden fundamental law is well forgotten old one directly related to the Landau-Migdal quasiparticles, while the basic properties and the scaling behavior of the strongly correlated systems can be described within the framework of the fermion condensation quantum phase transition (FCQPT). The phase transition comprises the extended quasiparticle paradigm that allows us to explain the non-Fermi liquid (NFL) behavior observed in these systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Our observations are in good agreement with experimental facts and show that FCQPT is responsible for the observed NFL behavior and quasiparticles survive both high temperatures and high magnetic fields.  相似文献   

5.
We analyze measurements of the magnetization, differential susceptibility and specific heat of quasi-onedimensional insulator Cu(C4H4N2)(NO3)2 (CuPzN) subjected to magnetic fields. We show that the thermodynamic properties are defined by quantum spin liquid formed with spinons, with the magnetic field tuning the insulator CuPzN towards quantum critical point related to fermion condensation quantum phase transition (FCQPT) at which the spinon effective mass diverges kinematically. We show that the FCQPT concept permits to reveal and explain the scaling behavior of thermodynamic characteristics. For the first time, we construct the schematic T–H (temperature-magnetic field) phase diagram of CuPzN that contains Landau–Fermi-liquid, crossover and non-Fermi liquid parts, thus resembling that of heavy-fermion compounds.  相似文献   

6.
We consider the behavior of quasiparticles in the superconducting state of high-Tc metals within the framework of the theory of the superconducting state based on the fermion condensation quantum phase transition. We show that the behavior coincides with the behavior of Bogoliubov quasiparticles, whereas the maximum value of the superconducting gap and other exotic properties are determined by the presence of the fermion condensate. If at low temperatures the normal state is recovered by the application of a magnetic field suppressing the superconductivity, the induced state can be viewed as a Landau-Fermi liquid. These observations are in good agreement with recent experimental facts.  相似文献   

7.
The behavior of the electronic system of heavy-fermion metals is considered. We show that there exist at least two main types of the behavior when the system is near quantum critical point, which can be identified as the fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the behavior of a highly correlated Fermi liquid, while the second type is depicted by the behavior of a strongly correlated Fermi liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a highly correlated Fermi liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures T, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the LFL behavior by the application of magnetic fields B. If the system has undergone FCQPT, it can be considered as a strongly correlated Fermi liquid which demonstrates the NFL behavior even at low temperatures. It can be turned into LFL by applying magnetic fields B. We show that the effective mass M* diverges at the very point that the Neél temperature goes to zero. The B-T phase diagrams of both liquids are studied. We demonstrate that these B-T phase diagrams have a strong impact on the main properties of heavy-fermion metals, such as the magnetoresistance, resistivity, specific heat, magnetization, and volume thermal expansion.  相似文献   

8.
We demonstrate that in very many natural systems consisting of huge numbers of identical fermions at zero temperature a phase transition can happen that leads to a quite specific state called fermion condensate. As a signal of such fermion condensation quantum phase transition serves unlimited increase of the effective mass of quasi‐particles that determine the excitation spectrum of multi‐fermion system under consideration. We discuss the conditions, under which this transition happens, and illustrate the physical properties of a system that is located near this phase transition. The effective mass diverge when the inter‐particle interaction is repulsive and medium strong as compared to particle's kinetic energy. So, low temperature and intermediate density plasma is a good candidate for such a phenomenon. Therefore, this paper can serve as a source of stimulating ideas when exploring a possible non‐Fermi liquid behavior of plasma. A common and essential feature of such systems is a possibility to introduce quasiparticles that are different, however, from those suggested by L.D. Landau almost sixty years ago, by crucial dependence of temperature, external magnetic field, pressure and so on. These systems exhibit scaling behavior of their effective mass and other characteristics that are determined by this effective mass. It is demonstrated that a huge amount of experimental data on different strongly correlated compounds suggest that they, starting from some temperature and down, are governed by the fermion condensation quantum phase transition. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
We analyze exciting recent measurements [Phys. Rev. Lett. 114 (2015) 037202] of the magnetization, differential susceptibility and specific heat on one dimensional Heisenberg antiferromagnet Cu(C4H4N2)(NO3)2 (CuPzN) subjected to strong magnetic fields. Using the mapping between magnons (bosons) in CuPzN and fermions, we demonstrate that magnetic field tunes the insulator towards quantum critical point related to so‐called fermion condensation quantum phase transition (FCQPT) at which the resulting fermion effective mass diverges kinematically. We show that the FCQPT concept permits to reveal the scaling behavior of thermodynamic characteristics, describe the experimental results quantitatively, and derive for the first time the (temperature—magnetic field) phase diagram, that contains Landau‐Fermi‐liquid, crossover and non‐Fermi liquid parts, thus resembling that of heavy‐fermion compounds.  相似文献   

10.
Basing on the density functional theory of fermion condensation, we analyze the non-Fermi liquid behavior of strongly correlated Fermi-systems such as heavy-fermion metals. When deriving equations for the effective mass of quasiparticles, we consider solids with a lattice and homogeneous systems. We show that the low-temperature thermodynamic and transport properties are formed by quasiparticles, while the dependence of the effective mass on temperature, number density, magnetic fields, etc., gives rise to the non-Fermi liquid behavior. Our theoretical study of the heat capacity, magnetization, energy scales, the longitudinal magnetoresistance and magnetic entropy are in good agreement with the remarkable recent facts collected on the heavy-fermion metal YbRh2Si2.  相似文献   

11.
Orthogonal metal is a new quantum metallic state that conducts electricity but acquires no Fermi surface(FS)or quasiparticles, and hence orthogonal to the established paradigm of Landau's Fermi-liquid(FL). Such a state may hold the key of understanding the perplexing experimental observations of quantum metals that are beyond FL, i.e., dubbed non-Fermi-liquid(nFL), ranging from the Cu-and Fe-based oxides, heavy fermion compounds to the recently discovered twisted graphene heterostructures. However, to fully understand such an exotic state of matter, at least theoretically, one would like to construct a lattice model and to solve it with unbiased quantum many-body machinery. Here we achieve this goal by designing a 2D lattice model comprised of fermionic and bosonic matter fields coupled with dynamic Z_2 gauge fields, and obtain its exact properties with sign-free quantum Monte Carlo simulations. We find that as the bosonic matter fields become disordered, with the help of deconfinement of the Z_2 gauge fields, the system reacts with changing its nature from the conventional normal metal with an FS to an orthogonal metal of n FL without FS and quasiparticles and yet still responds to magnetic probe like an FL. Such a quantum phase transition from a normal metal to an orthogonal metal, with its electronic and magnetic spectral properties revealed, is calling for the establishment of new paradigm of quantum metals and their transition with conventional ones.  相似文献   

12.
当考虑电子间的库伦排斥相互作用,以及电荷、自旋和轨道之间的相互耦合时,诸多超越 了近自由电子框架的新奇量子态涌现而出,如非常规超导态和量子自旋液体等。对这些新奇物态 的认知不仅会拓展现有的知识框架,也有望引发新一轮的量子科技革命。因此,对强关联物理的 研究是当下凝聚态物理领域的前沿课题。铜基高温超导体的母体是一种莫特绝缘体,在传统的能 带论之下被预言为金属态。然而电子间的强关联行为使得它表现出绝缘体的性质。由于莫特绝缘 体中库伦相互作用致使能隙打开并冻结其中的电荷自由度,所以在该体系中难以开展电输运性质 的测量研究。作为一种对于元激发(不仅包括电子,还包括磁振子、自旋子等)敏感的探针,热输 运测量在强关联电子系统的研究中发挥着重要的作用。本文回顾了近些年在非常规超导、重费米 子系统和量子自旋液体研究中一些有趣的纵向热输运性质的研究成果,并与我们近期发表的运用 横向热导率测量热霍尔现象的综述文章相互补充。   相似文献   

13.
The behavior of the specific heat cp, effective mass M*, and the thermal expansion coefficient of a Fermi system located near the fermion condensation quantum phase transition (FCQPT) is considered. We observe the first type behavior if the system is close to FCQPT: the specific heat , , while the thermal expansion coefficient . Thus, the Grüneisen ratio Γ(T)=/cp does not diverges. At the transition region, where the system passes over from the non-Fermi liquid to the Landau Fermi liquid, the ratio diverges as . When the system becomes the Landau Fermi liquid, Γ(T,r)∝1/r, with r being a distance from the quantum critical point. Provided the system has undergone FCQPT, the second type takes place: the specific heat behaves as , M*∝1/T, and =a+bT with a,b being constants. Again, the Grüneisen ratio diverges as .  相似文献   

14.
Multiple energy scales are detected in measurements of the thermodynamic and transport properties in heavy fermion metals. We demonstrate that the experimental data on the energy scales can be well described by the scaling behavior of the effective mass at the fermion condensation quantum phase transition, and show that the dependence of the effective mass on temperature and applied magnetic fields gives rise to the non-Fermi liquid behavior. Our analysis is placed in the context of recent salient experimental results. Our calculations of the non-Fermi liquid behavior, of the scales and thermodynamic and transport properties are in good agreement with the heat capacity, magnetization, longitudinal magnetoresistance and magnetic entropy obtained in remarkable measurements on the heavy fermion metal YbRh2Si2.  相似文献   

15.
16.
17.
The condensation of magnetic quasiparticles into the nonmagnetic ground state has been used to explain novel magnetic ordering phenomena observed in quantum spin systems. We present neutron scattering results across the pressure-induced quantum phase transition and for the novel ordered phase of the magnetic insulator TlCuCl3, which are consistent with the theoretically predicted two degenerate gapless Goldstone modes, similar to the low-energy spin excitations in the field-induced case. These novel experimental findings complete the field-induced Bose-Einstein condensate picture and support the recently proposed field-pressure phase diagram common for quantum spin systems with an energy gap of singlet-triplet nature.  相似文献   

18.
Strongly correlated Fermi systems are among the most intriguing and fundamental systems in physics. We show that the herbertsmithite ZnCu3(OH)6Cl2 can be regarded as a new type of strongly correlated electrical insulator that possesses properties of heavy-fermion metals with one exception: it resists the flow of electric charge. We demonstrate that herbertsmithite’s low-temperature properties are defined by a strongly correlated quantum spin liquid made with hypothetic particles such as fermionic spinons that carry spin 1/2 and no charge. Our calculations of its thermodynamic and relaxation properties are in good agreement with recent experimental facts and allow us to reveal their scaling behavior, which strongly resembles that observed in heavy-fermion metals. Analysis of the dynamic magnetic susceptibility of strongly correlated Fermi systems suggests that there exist at least two types of its scaling.  相似文献   

19.
Quantum phases of naturally-occurring systems exhibit distinctive collective phenomena as manifestation of their many-body correlations, in contrast to our persistent technological challenge to engineer at will such strong correlations artificially. Here we show theoretically that quantum correlations exhibited in the 2D valence bond solid phase of a quantum antiferromagnet, modeled by Affleck, Kennedy, Lieb, and Tasaki (AKLT) as a precursor of spin liquids and topological orders, are sufficiently complex yet structured enough to simulate universal quantum computation when every single spin can be measured individually. This unveils that an intrinsic complexity of naturally-occurring 2D quantum systems—which has been a long-standing challenge for traditional computers—could be tamed as a computationally valuable resource, even if we are limited not to create newly entanglement during computation. Our constructive protocol leverages a novel way to herald the correlations suitable for deterministic quantum computation through a random sampling, and may be extensible to other ground states of various 2D valence bond phases beyond the AKLT state.  相似文献   

20.
We study a model of one-dimensional fermionic atoms with a narrow Feshbach resonance that allows them to bind in pairs to form bosonic molecules. We show that at low energy, a coherence develops between the molecule and fermion Luttinger liquids. At the same time, a gap opens in the spin excitation spectrum. The coherence implies that the order parameters for the molecular Bose-Einstein condensation and the atomic BCS pairing become identical. Moreover, both bosonic and fermionic charge density wave correlations decay exponentially, in contrast with a usual Luttinger liquid. We exhibit a Luther-Emery point where the systems can be described in terms of noninteracting pseudofermions. At this point we discuss the threshold behavior of density-density response functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号