首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vortex‐induced vibrations of a circular cylinder placed in a uniform flow at Reynolds number 325 are investigated using a stabilized space–time finite element formulation. The Navier–Stokes equations for incompressible fluid flow are solved for a two‐dimensional case along with the equations of motion of the cylinder that is mounted on lightly damped spring supports. The cylinder is allowed to vibrate, both in the in‐line and in the cross‐flow directions. Results of the computations are presented for various values of the structural frequency of the oscillator, including those that are sub and superharmonics of the vortex‐shedding frequency for a stationary cylinder. In most of the cases, the trajectory of the cylinder corresponds to a Lissajou figure of 8. Lock‐in is observed for a range of values of the structural frequency. Over a certain range of structural frequency (Fs), the vortex‐shedding frequency of the oscillating cylinder does not match Fs exactly; there is a slight detuning. This phenomenon is referred to as soft‐lock‐in. Computations show that this detuning disappears when the mass of the cylinder is significantly larger than the mass of the surrounding fluid it displaces. A self‐limiting nature of the oscillator with respect to cross‐flow vibration amplitude is observed. It is believed that the detuning of the vortex‐shedding frequency from the structural frequency is a mechanism of the oscillator to self‐limit its vibration amplitude. The dependence of the unsteady solution on the spatial resolution of the finite element mesh is also investigated. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
The turbulent flow behind a circular cylinder subjected to forced oscillation is numerically studied at a Reynolds number of 5500 by using three-dimensional Large Eddy Simulations (3-D LES) technique with the Smagorinsky model. The filtered equations are discretised using the finite volume method with an O-type structured grid and a second-order accurate method in both time and space. Firstly, the main wake parameters of a stationary cylinder are examined and compared in the different grid resolutions. Secondly, a transversely oscillating cylinder with a constant amplitude in a uniform flow is investigated. The cylinder oscillation frequency ranges between 0.75 and 0.95 of the natural Kármán frequency, and the excitation amplitude is moderate, 50% of the cylinder diameter. The flow characteristics of an oscillating cylinder are numerically examined and the corresponding wake modes are captured firstly in 3-D LES at Re=5500. A transition between different wake modes is firstly investigated in a set of numerical simulations.  相似文献   

3.
The numerical prediction of vortex-induced vibrations has been the focus of numerous investigations to date using tools such as computational fluid dynamics. In particular, the flow around a circular cylinder has raised much attention as it is present in critical engineering problems such as marine cables or risers. Limitations due to the computational cost imposed by the solution of a large number of equations have resulted in the study of mostly 2-D flows with only a few exceptions. The discrepancies found between experimental data and 2-D numerical simulations suggested that 3-D instabilities occurred in the wake of the cylinder that affect substantially the characteristics of the flow. The few 3-D numerical solutions available in the literature confirmed such a hypothesis. In the present investigation the effect of the spanwise extension of the solution domain on the 3-D wake of a circular cylinder is investigated for various Reynolds numbers between 40 and 1000. By assessing the minimum spanwise extension required to predict accurately the flow around a circular cylinder, the infinitely long cylinder is reduced to a finite length cylinder, thus making numerical solution an effective way of investigating flows around circular cylinders. Results are presented for three different spanwise extensions, namely πD/2, πD and 2πD. The analysis of the force coefficients obtained for the various Reynolds numbers together with a visualization of the three-dimensionalities in the wake of the cylinder allowed for a comparison between the effects of the three spanwise extensions. Furthermore, by showing the different modes of vortex shedding present in the wake and by analysing the streamwise components of the vorticity, it was possible to estimate the spanwise wavelengths at the various Reynolds numbers and to demonstrate that a finite spanwise extension is sufficient to accurately predict the flow past an infinitely long circular cylinder.  相似文献   

4.
In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = fo/fs = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.  相似文献   

5.
Results are presented for the numerical simulation of vortex-induced vibrations (VIVs) of a cylinder at low Reynolds numbers (Re). A stabilized space–time finite-element formulation is utilized to solve the incompressible flow equations in primitive variables. The cylinder, of low nondimensional mass (m*=10), is free to vibrate in, both, the transverse and in-line directions. To investigate the effect of Re and reduced natural frequency, Fn, two sets of computations are carried out. In the first set of computations the Reynolds number is fixed (=100) and the reduced velocity (U*=1/Fn) is varied. Hysteresis, in the response of the cylinder, is observed at the low- as well as high-end of the range of reduced velocity for synchronization/lock-in. In the second set of computations, the effect of Reynolds number (50Re500) is investigated for a fixed reduced velocity (U*=4.92). The effect of the Reynolds number is found to be very significant for VIVs. While the vortex-shedding mode at low Re is 2S (two single vortices shed per cycle), at Re300 and larger, the P+S mode of vortex shedding (a single vortex and one pair of counter-rotating vortices are released in each cycle of shedding) is observed. This is the first time that the P+S mode has been observed for a cylinder undergoing free vibrations. This change of vortex-shedding mode is hysteretic in nature and results in a very large increase in the amplitude of in-line oscillations. Since the flow ceases to remain two-dimensional beyond Re200, it remains to be seen whether the P+S mode of shedding can actually be observed in reality for free vibrations.  相似文献   

6.
An experimental and numerical study has been carried out to investigate the heat transfer characteristics of a horizontal circular cylinder exposed to a slot jet impingement of air. A square-edged nozzle is mounted parallel with the cylinder axis and jet flow impinges on the bottom of the cylinder. The study is focused on low Reynolds numbers ranging from 120 to 1,210, Grashof numbers up to Gr = 10Re 2 and slot-to-cylinder spacing from 2 to 8 of the slot width. The flow field is greatly influenced by the slot exit velocity and the buoyancy force due to density change. A Mach–Zehnder Interferometer is used for measurement of local Nusselt number around the cylinder at 10° interval. It is observed that the average Nusselt number decreases with increasing the jet spacing and increases with rising the Reynolds number. A finite volume method utilizing a curvilinear coordinate transformation is used for numerical modeling. The numerical results show good agreement with the experimental results. The flow and thermal field are seen to be stable and symmetric around the cylinder over the range of parameters studied.  相似文献   

7.
This paper presents results of a numerical study of vortex-induced vibrations of two side-by-side circular cylinders of different diameters in steady incompressible flow. The two-dimensional Reynolds-averaged Navier–Stokes equations with a SST kω turbulence model are solved using the Petrov–Galerkin finite element method and the Arbitrary-Lagrangian–Eulerian scheme. The diameter ratio of the two cylinders is fixed at 0.1 and the mass ratio of both cylinders is 5.0. Both cylinders are constrained to oscillate in the transverse direction only. The Reynolds number based on the large cylinder diameter and free stream velocity is fixed at 5000. The effects of the reduced velocities of the cylinders on the vibration amplitude and vortex shedding regimes are investigated. It is found that for the range of parameters considered, collision between the two cylinders is dependent on the difference of the reduced velocities of the cylinders. Presence of the small cylinder in the proximity of the large one appears to have significant effects on the vortex shedding regime and vibration amplitude of the large cylinder.  相似文献   

8.
串列布置三圆柱涡激振动频谱特性研究   总被引:1,自引:1,他引:0  
涂佳黄  胡刚  谭潇玲  梁经群  张平 《力学学报》2021,53(6):1552-1568
对串列三圆柱体双自由度涡激振动问题进行了数值计算, 并分析了雷诺数、固有频率比和约化速度对串列三圆柱体结构动力响应及频谱特性的影响. 研究发现: 雷诺数、频率比对上游圆柱的振幅和流体力系数的影响较小. 中游圆柱频率锁定区域随着雷诺数的增大而增大, 其动力响应受上游圆柱尾流的影响较大, 但频率比的影响较小. 同时, 流体力系数在约化速度较小时受雷诺数和频率比的影响较大. 另外, 下游圆柱的振幅和流体力系数受雷诺数及频率比的影响较大. 雷诺数、频率比和约化速度对圆柱流体力系数能量谱密度(PSD)曲线中主峰幅值、频谱成分及波动性的影响较大. 流体力系数PSD曲线波动性的增强, 导致圆柱运动轨迹会从"8"字形转变成不规则形状. 当频率比为2.0时, 上游圆柱尾流出现P$+$S模式, 导致其发生非对称运动, 且升、阻力系数PSD曲线主峰重合. 最后, 激励荷载平均功率值随约化速度的变化趋势与对应的结构动力响应的变化类似. 在同一约化速度区间内, 结构振动响应的强弱与位移的平均功率值成正比. 对不同约化速度区间内的升力系数功率谱密度分析时, 振动频率比($f_{s}/f_{n, y})$对结构振动响应的影响更大.   相似文献   

9.
Adjoint formulation is employed for the optimal control of flow around a rotating cylinder, governed by the unsteady Navier–Stokes equations. The main objective consists of suppressing Karman vortex shedding in the wake of the cylinder by controlling the angular velocity of the rotating body, which can be constant in time or time‐dependent. Since the numerical control problem is ill‐posed, regularization is employed. An empirical logarithmic law relating the regularization coefficient to the Reynolds number was derived for 60?Re?140. Optimal values of the angular velocity of the cylinder are obtained for Reynolds numbers ranging from Re=60 to Re=1000. The results obtained by the computational optimal control method agree with previously obtained experimental and numerical observations. A significant reduction of the amplitude of the variation of the drag coefficient is obtained for the optimized values of the rotation rate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

10.
Based on the finite volume method, the flow past a spinning circular cylinder at a low subcritical Reynolds number (Re =1 × 10 5), high subcritical Reynolds number (Re =1.3 ×10 5), and critical Reynolds number (Re =1.4 ×10 5) were each simulated using the Navier-Stokes equations and the γ-Re ?? transition model coupled with the SST k?ω turbulence model. The system was solved using an implicit algorithm. The freestream turbulence intensity decay was effectively controlled by the source term method proposed by Spalart and Rumsey. The variations in the Magnus force as a function of the spin ratio, α were obtained for the three Reynolds numbers, and the flow mechanism was analyzed. The results indicate that the asymmetric transitions induced by spin affect the asymmetric separations at the top and bottom surfaces of the circular cylinder, which further affects the pressure distributions at the top and bottom surfaces of the circular cylinder and ultimately result in a negative Magnus force, whose direction is opposite to that of the classical Magnus force. This study is the first to use a numerical simulation method to predict a negative Magnus force acting on a spinning circular cylinder. At the low subcritical Reynolds number, the Magnus force remained positive for all spin ratios. At the high subcritical Reynolds number, the sign of the Magnus force changed twice over the range of the spin ratio. At the critical Reynolds number, the sign of the Magnus force changed only once over the range of the spin ratio. For relatively low spin ratios, the Magnus force significantly differed by Reynolds number; however, this variation diminished as the spin ratio increased.  相似文献   

11.
Forced convection heat transfer from an unconfined circular cylinder in the steady cross-flow regime has been studied using a finite volume method (FVM) implemented on a Cartesian grid system in the range as 10 ≤ Re ≤ 45 and 0.7 ≤ Pr ≤ 400. The numerical results are used to develop simple correlations for Nusselt number as a function of the pertinent dimensionless variables. In addition to average Nusselt number, the effects of Re, Pr and thermal boundary conditions on the temperature field near the cylinder and on the local Nusselt number distributions have also been presented to provide further physical insights into the nature of the flow. The rate of heat transfer increases with an increase in the Reynolds and/or Prandtl numbers. The uniform heat flux condition always shows higher value of heat transfer coefficient than the constant wall temperature at the surface of the cylinder for the same Reynolds and Prandtl numbers. The maximum difference between the two values is around 15–20%.  相似文献   

12.
The steady flow of generalized Newtonian fluid around a stationary cylinder placed between two parallel plates was studied numerically. Finite volume method was applied to solve the momentum equations along with the continuity equation and the Power law rheological model within the laminar flow regime for a range of the Reynolds number Re and the Power law index n values. The values of the Reynolds number, based on physical and rheological properties, cylinder radius and bulk velocity, were varied between 0.0001≤Re≤10, while the Power law index values mapped the 0.50≤n≤1.50 range, allowing for the investigation of both shear-thinning and shear-thickening effects at the creeping as well as slowly moving fluid flow conditions. We report accurate results of a systematic study with a focus on the most important characteristics of fluid flow past circular cylinder. It is shown that for the creeping flow regime there exist finite sized redevelopment length, drag and loss coefficient. Last but not least, the present numerical results indicate that the shear-thinning viscous behaviour decreases the onset of flow separation.  相似文献   

13.
Laminar stagnation flow, axisymmetrically yet obliquely impinging on a moving circular cylinder, is formulated as an exact solution of the Navier–Stokes equations. Axial velocity is time‐dependent, whereas the surface transpiration is uniform and steady. The impinging free stream is steady with a strain rate k?. The governing parameters are the stagnation‐flow Reynolds number Re=k?a2/2ν, and the dimensionless transpiration S=U0/k?a. An exact solution is obtained by reducing the Navier–Stokes equations to a system of differential equations governed by Reynolds number and the dimensionless wall transpiration rate, S. The system of Boundary Value Problems is then solved by the shooting method and by deploying a finite difference scheme as a semi‐similar solution. The results are presented for velocity similarity functions, axial shear stress and stream functions for a variety of cases. Shear stresses in all cases increase with the increase in Reynolds number and suction rate. The effect of different parameters on the deflection of viscous stagnation circle is also determined. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a detailed investigation on the flow past a porous covering cylinder is presented through the lattice Boltzmann method. The Brinkman‐Forchheimer‐extended Darcy model is adopted for the entire flow field with the solid, fluid, and porous medium. The effects of several parameters, such as porous layer thickness, Darcy number, porosity, and Reynolds number on flow field are discussed. Compared with the case of a solid cylinder, the present work shows that the porous layer may play an important role on the flow, the lift and drag force exerted on the cylinder. The numerical results indicate that the maximal drag coefficient Cd and maximal amplitude of lift coefficient Cl exist at certain Darcy number which is in the range of 10?6–10?2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
The flow around an infinitely long circular cylinder at Reynolds numbers between 5Re250 is investigated numerically by means of a spectral element method. Careful studies of the effect of resolution and extension of the computational domain on drag and lift forces, base-pressure coefficient and Strouhal number are performed in the laminar, two-dimensional regime. Asymptotic results are obtained by increasing the size of the computational domain to several thousands of cylinder diameters. It is shown that, in contrast to the Strouhal number, the force coefficients and the base-pressure coefficient are strongly dependent on the resolution and even more on the size of the computational domain. For both the asymptotic and finite domains, the Reynolds number relationships are compared to numerical and experimental data from the literature. The results accurately reproduce experimental findings and explain deviations of former numerical investigations. Our database is useful both for validation of numerical codes and measurement verifications where the separation of physical features and effects of experimental arrangements are frequently an open question.  相似文献   

16.
Results are presented for the flow past a stationary square cylinder at zero incidence for Reynolds number, Re ? 150. A stabilized finite‐element formulation is employed to discretize the equations of incompressible fluid flow in two‐dimensions. For the first time, values of the laminar separation Reynolds number, Res, and separation angle, θs, at Res are predicted. Also, the variation of θs with Re is presented. It is found that the steady separation initiates at Re = 1.15. Contrary to the popular belief that separation originates at the rear sharp corners, it is found to originate from the base point, i.e. θs=180° at Re = Res. For Re > 5, θs approaches the limit of 135 °. The length of the separation bubble increases approximately linearly with increasing Re. The drag coefficient varies as Re?0.66. Flow characteristics at Re ? 40 are also presented for elliptical cylinders of aspect ratios 0.2, 0.5, 0.8 and 1 (circle) having the same characteristic dimension as the square and major axis oriented normal to the free‐stream. Compared with a circular cylinder, the flow separates at a much lower Re from a square cylinder leading to the formation of a bigger wake (larger bubble length and width). Consequently, at a given Re, the drag on a square cylinder is more than the drag of a circular cylinder. This suggests that a cylinder with square section is more bluff than the one with circular section. Among all the cylinder shapes studied, the square cylinder with sharp corners generates the largest amount of drag. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Free vibrations of a circular cylinder of low non-dimensional mass are investigated at low Reynolds numbers. Computations are carried out for 5% blockage. Lock-in is observed for a range of Re and is accompanied with hysteresis at both lower as well as higher Re ends of the synchronisation/lock-in region. It is well known that the lock-in regime for free vibrations depends on the non-dimensional mass of the oscillator. The results from the present computations are compared with the data for forced vibrations from Koopmann (Journal of Fluid Mechanics, 28, 501–512, 1967) on a Y max/D vs. f* plot, where Y max is the maximum oscillation amplitude and f* is the ratio of cylinder vibration frequency to the vortex shedding frequency for a stationary cylinder. Good agreement is observed for the critical amplitude needed for onset of synchronisation between the forced and free vibrations. The results from the free vibrations are compared to the predictions from the linear oscillator model by assuming that the forces on the cylinder are unaffected as a result of vibrations. It is found that, for low mass oscillators, the modification of vortex shedding frequency and lift coefficient due to cylinder oscillations leads to the enhancement of the lock-in regime.  相似文献   

18.
Flow around a two-dimensional circular cylinder of a stratified fluid with periods buoyancy Tb = 25.2 and 6.28 sec is studied numerically over a wide range of Reynolds and Froude numbers. It is found that in the presence of a perturbation ahead of a cylinder which moves downstream with increasing Reynolds number, the salinity isolines have the shape of a semi-circular comb with sharp teeth. The shape change of the attached waves and the occurrence of fluid layers of different densities in the cylinder wake are studied. In flows with a buoyancy period Tb = 6.28 sec at Reynolds numbers Re < 60, stagnant zones are found in the cylinder wake, and at Re > 60, these zones are absent.  相似文献   

19.
The origination of detached separation is studied on the basis of a numerical solution of the full Navier–Stokes equations. Fluxes of vorticity with different signs generated with twice the frequency of cylinder oscillation move from the cylinder to the outer surface of a detached liquid layer in the form of concentric rings. Near the critical layer between the attached layer and the main flow these rings are torn and crimped to the regions of separated vortices of the corresponding sign. The form of detached separated vortices is similar to that of vortices originating from a stationary circular cylinder in a uniform flow. Transition of the flow to a non-symmetric form with Karman vortex street generation at a Reynolds number (based on the radius) greater than 17 is revealed. This critical Reynolds number is smaller than that for a stationary circular cylinder in a viscous stream (where Re=20 has been determined to be a critical value) and corresponds to the Reynolds number extrapolated from the critical value for the stationary cylinder by increasing the cylinder radius by the attached layer thickness. The vorticity flux from the cylinder surface immediately into the separation region decreases as the frequency of cylinder oscillation increases. Violation of the flow potentiality in the detached separation region is the main cause of the vorticity generation on the outer surface of the attached liquid layer. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
Two-degree-of-freedom (2dof) vortex-induced vibration (VIV) of a circular cylinder in oscillatory flow is investigated numerically. The direction of the oscillatory flow is perpendicular to the spanwise direction of the circular cylinder. Simulations are carried out for the Keulegan–Carpenter (KC) numbers of 10, 20 and 40 and the Reynolds numbers ranging from 308 to 9240. The ratio of the Reynolds number to the reduced velocity is 308. At KC=10, the amplitude of the primary frequency component is much larger than those of other frequency components. Most vibrations for KC=20 and 40 have multiple frequencies. The primary frequency of the response in the cross-flow direction decreases with the increasing reduced velocity, except when the reduced velocity is very small. Because the calculated primary frequencies of the response in the cross-flow direction are multiple of the oscillatory flow frequency in most of the calculated cases, the responses are classified into single-frequency mode, double-frequency mode, triple frequency mode, etc. If the reduced velocity is in the range where the VIV is transiting from one mode to another, the vibration is very irregular.For each KC number the range of the reduced velocity can be divided into a cross-flow-in-phase regime (low Vr), where the response and the hydrodynamic force in the cross-flow direction synchronize, and a cross-flow-anti-phase regime (high Vr), where the response and the hydrodynamic force in the cross-flow direction are in anti-phase with each other. The boundary values of Vr between the cross-flow-in-phase and the cross-flow-anti-phase regimes are 7, 9 and 11 for KC=10, 20 and 40, respectively. For KC=20, another cross-flow-anti-phase regime is found between 15≤Vr≤19. Similarly the in-line-in-phase and the in-line-anti-phase regimes are also identified for the response in the in-line direction. It is found that the boundary value of Vr between the in-line-in-phase and the in-line-anti-phase regimes is greater than that in the cross-flow direction. They are 14 and 26 for KC=10 and 20, respectively. Maximum amplitude occurs at the boundary value of the reduced velocity between in-phase regime and anti-phase regime in both the x- and the y-directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号