首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Chaos in dynamical systems has best been understood in terms of Hamiltonian systems. A primary method of diagnosis of chaos in these systems is the Lyapunov exponent. According to general relativity, space-time is itself a dynamical system. When the evolution of a model universe is expressed in the ADM form it can be described as a Hamiltonian system. Among the various model cosmologies, the Mixmaster or Bianchi IX cosmology has been extensively studied as a candidate to exhibit chaos. However, the Lyapunov exponents in this system have shown contradictory properties, including a seeming dependence on the coordinates used to describe space-time. Such dependencies, if true, would be surprising as the time coordinate of space-time is unrelated to the parameterization of phase space. Further, this sort of dependence would relegate chaos to a bad coordinate choice rather than a dynamic property of the system. The problem with the Lyapunov exponent lies in the ambiguities remaining in the ADM action integral. The current interpretation involves an arbitrary Lagrange multiplier—thought to be necessary for the coordinate invariance of space-time. An arbitrary multiplier turns out to be unnecessary for coordinate invariance, and in addition destroys the symplectic structure of phase space. In reality, the geometry selects the parameterization of phase space, and any change in the parameter results in a changed Hamiltonian system. It must be emphasized that the fixing of the phase space parameter does NOT impose a coordinate choice on space-time. The parameter is selected by the symplectic structure of phase space and full coordinate invariance of space-time is left intact. Once the demands of both geometries, space-time and phase space, have been satisfied, the Lyapunov exponent becomes independent of the coordinate imposed on space-time. Additionally, the correction of the phase space structure leads to a Hamiltonian that is more general, in that it describes a gravitational system with a cosmological constant, than is currently the case.  相似文献   

2.
A discontinuous media can be described by fractal dimensions. Fractal objects has special geometric properties, which are discrete and discontinuous structure. A fractal-time diffusion equation is a model for subdiffusive. In this work, we have generalized the Hamiltonian and Lagrangian dynamics on fractal using the fractional local derivative, so one can use as a new mathematical model for the motion in the fractal media. More, Poisson bracket on fractal subset of real line is suggested.  相似文献   

3.
In the teleparallel equivalent of general relativity the integral form of the Hamiltonian constraint contains explicitly theadm energy in the case of asymptotically flat space-times. We show that such expression of the constraint leads to a natural and straightforward construction of a Schrödinger equation for time-dependent physical states. The quantized Hamiltonian constraint is thus written as an energy eigenvalue equation. We further analyse the constraint equations in the case of a space-time endowed with a spherically symmetric geometry. We find the general functional form of the time-dependent solutions of the quantized Hamiltonian and vector constraints.  相似文献   

4.
5.
The definition of quasi-local mass for a bounded space-like region Ω in space-time is essential in several major unsettled problems in general relativity. The quasi-local mass is expected to be a type of flux integral on the boundary two-surface \({\Sigma=\partial \Omega}\) and should be independent of whichever space-like region \({\Sigma}\) bounds. An important idea which is related to the Hamiltonian formulation of general relativity is to consider a reference surface in a flat ambient space with the same first fundamental form and derive the quasi-local mass from the difference of the extrinsic geometries. This approach has been taken by Brown-York [4,5] and Liu-Yau [16,17] (see also related works [3,6,9,12,14,15,28,32]) to define such notions using the isometric embedding theorem into the Euclidean three space. However, there exist surfaces in the Minkowski space whose quasilocal mass is strictly positive [19]. It appears that the momentum information needs to be accounted for to reconcile the difference. In order to fully capture this information, we use isometric embeddings into the Minkowski space as references. In this article, we first prove an existence and uniqueness theorem for such isometric embeddings. We then solve the boundary value problem for Jang’s [13] equation as a procedure to recognize such a surface in the Minkowski space. In doing so, we discover a new expression of quasi-local mass for a large class of “admissible” surfaces (see Theorem A and Remark 1.1). The new mass is positive when the ambient space-time satisfies the dominant energy condition and vanishes on surfaces in the Minkowski space. It also has the nice asymptotic behavior at spatial infinity and null infinity. Some of these results were announced in [29].  相似文献   

6.
In this paper, we find the teleparallel version of the cylindrically symmetric stiff fluid space-time. The expressions for torsion vector and torsion axial-vector are obtained. We show that the value of torsion axial-vector depends on the choice of tetrad fields. Furthermore, we calculate the energy and momentum densities and show that these values do not depend on the choice of tetrad fields. Finally, we find the equation determining trajectory and spin precession of a Dirac equation in the space-time under consideration and show that the corresponding Hamiltonian depends on the choice of tetrad fields.  相似文献   

7.
Hamiltonian chaotic dynamics is not ergodic due to the infinite number of islands imbedded in the stochastic sea. Stickiness of the islands' boundaries makes the wandering process very erratic with multifractal space-time structure. This complication of the chaotic process can be described on the basis of fractional kinetics. Anomalous properties of the chaotic transport become more transparent when there exists a set of islands with a hierarchical structure. Different consequences of the described phenomenon are discussed: a distribution of Poincare recurrences, characteristic exponents of transport, nonuniversality of transport, log periodicity, and chaos erasing. (c) 2000 American Institute of Physics.  相似文献   

8.
Fractional generalization of the diffusion equation includes fractional derivatives with respect to time and coordinate. It had been introduced to describe anomalous kinetics of simple dynamical systems with chaotic motion. We consider a symmetrized fractional diffusion equation with a source and find different asymptotic solutions applying a method which is similar to the method of separation of variables. The method has a clear physical interpretation presenting the solution in a form of decomposition of the process of fractal Brownian motion and Levy-type process. Fractional generalization of the Kolmogorov-Feller equation is introduced and its solutions are analyzed. (c) 1997 American Institute of Physics.  相似文献   

9.
In this work, we try to propose in a novel way, using the Bose and Fermi quantum network approach, a framework studying condensation and evolution of a space-time network described by the Loop quantum gravity. Considering quantum network connectivity features in Loop quantum gravity, we introduce a link operator, and through extending the dynamical equation for the evolution of the quantum network posed by Ginestra Bianconi to an operator equation, we get the solution of the link operator. This solution is relevant to the Hamiltonian of the network, and then is related to the energy distribution of network nodes. Showing that tremendous energy distribution induces a huge curved space-time network may indicate space time condensation in high-energy nodes. For example, in the case of black holes, quantum energy distribution is related to the area, thus the eigenvalues of the link operator of the nodes can be related to the quantum number of the area, and the eigenvectors are just the spin network states. This reveals that the degree distribution of nodes for the space-time network is quantized, which can form space-time network condensation. The black hole is a sort of result of space-time network condensation, however there may be more extensive space-time network condensations, such as the universe singularity (big bang).   相似文献   

10.
张红  李国华  罗懋康 《中国物理 B》2012,21(6):60201-060201
This paper derives the fractional backward Kolmogorov equations in fractal space-time based on the construction of a model for dynamic trajectories. It shows that for the type of fractional backward Kolmogorov equation in the fractal time whose coefficient functions are independent of time, its solution is equal to the transfer probability density function of the subordinated process X(Sα(t)), the subordinator Sα(t) is termed as the inverse-time α-stable subordinator and the process X(τ) satisfies the corresponding time homogeneous Ito stochastic differential equation.  相似文献   

11.
We introduce a smooth mapping of some discrete space-time symmetries into quasi-continuous ones. Such transformations are related with q-deformations of the dilations of the Euclidean space and with the noncommutative space. We work out two examples of Hamiltonian invariance under such symmetries. The Schrödinger equation for a free particle is investigated in such a noncommutative plane and a connection with anyonic statistics is found.  相似文献   

12.
Hamiltonian form of field dynamics is developed on a space-like hypersurface in space-time. A covariant Poisson bracket on the space-like hypersurface is defined and it plays a key role to describe every algebraic relation into a covariant form. It is shown that the Poisson bracket has the same symplectic structure that was brought in the covariant symplectic approach. An identity invariant under the canonical transformations is obtained. The identity follows a canonical equation in which the interaction Hamiltonian density generates a deformation of the space-like hypersurface. The equation just corresponds to the Yang-Feldman equation in the Heisenberg pictures in quantum field theory. By converting the covariant Poisson bracket on the space-like hypersurface to four-dimensional commutator, we can pass over to quantum field theory in the Heisenberg picture without spoiling the explicit relativistic covariance. As an example the canonical QCD is displayed in a covariant way on a space-like hypersurface.  相似文献   

13.
In the present study we consider the Hamiltonian of the Dirac equation in curved space in fermi normal coordinates to first order in the Riemann tensor, including the corrections to the electromagnetic field. Then the energy level shifts by the local curvature for both relativistic and nonrelativistic levels in (Anti-)de Sitter space-time are calculated.  相似文献   

14.
15.
The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of the space-time symmetry group is established. It is shown that each symmetric element of the enveloping algebra of the space-time symmetry group of a linear field equation generates a one-parameter group of symmetries of the field equation. The cases of the Maxwell and Dirac equations are studied in detail. Then it is shown that (at least in the sense of a power series in the coupling constant) the conservation laws of the linear case can be deformed to conservation laws of a nonlinear field equation which is obtained from the linear one by adding a nonlinear term invariant under the group of space-time symmetries. As an example, our method is applied to the Korteweg-de Vries equation and to the massless Thirring model.  相似文献   

16.
A quantization of field theory based on the De Donder-Weyl (DW) covariant Hamiltonian formulation is discussed. A hypercomplex extension of quantum mechanics, in which the space-time Clifford algebra replaces that of the complex numbers, appears as a result of quantization of Poisson brackets on differential forms which were put forward for the DW theory earlier. The proposed covariant hypercomplex Schrödinger equation is shown to lead in the classical limit to the DW Hamilton-Jacobi equation and to obey the Ehrenfest principle in the sense that the DW canonical field equations are satisfied for expectation values of properly chosen operators.  相似文献   

17.
In the framework of the rest-frame instant form of tetrad gravity, where the Hamiltonian is the weak ADM energy , we define a special completely fixed 3-orthogonal Hamiltonian gauge, corresponding to a choice of non-harmonic 4-coordinates, in which the independent degrees of freedom of the gravitational field are described by two pairs of canonically conjugate Dirac observables (DO) . We define a Hamiltonian linearization of the theory, i.e. gravitational waves, without introducing any background 4-metric, by retaining only the linear terms in the DO's in the super-hamiltonian constraint (the Lichnerowicz equation for the conformal factor of the 3-metric) and the quadratic terms in the DO's in . We solve all the constraints of the linearized theory: this amounts to work in a well defined post-Minkowskian Christodoulou-Klainermann space-time. The Hamilton equations imply the wave equation for the DO's , which replace the two polarizations of the TT harmonic gauge, and that linearized Einstein's equations are satisfied. Finally we study the geodesic equation, both for time-like and null geodesics, and the geodesic deviation equation.  相似文献   

18.
A one-electron atom is considered in a general curved space-time. The Hamiltonian of the Dirac equation is written in Fermi normal coordinates, including all interaction terms of first order in the Riemann tensor of the space-time. Expressions are obtained for the shifts in various atomic energy levels caused by the curvature. There is a possibility that these shifts would be observable in the spectrum of hydrogen falling into small black holes (radius about 10–3 cm) left over from the early universe.This essay received the fifth award from the Gravity Research Foundation for the year 1980.-Ed.Work supported in part by the National Science Foundation.  相似文献   

19.
We construct a simple model which exhibits some of the properties discussed by van Hove in his study of the Pauli master equation. The model consists of an infinite chain of quantum oscillators which are coupled so that the interaction Hamiltonian is quadratic. We suppose the chain is in equilibrium at an inverse temperature and study the return to equilibrium when a chosen oscillator is given an arbitrary perturbation. We show that in the limit as the interaction becomes weaker and of longer range, the evolution of the chosen oscillator becomes a diffusion equation. Moreover we give an explicit example where the evolution of the chosen oscillator has the Markov property and where the Pauli master equation is exactly satisfied.  相似文献   

20.
A general criterion of when a Hamiltonian system has a wave equation is set up, and all such Hamiltonian systems (and hence all wave equations) are found. It is shown that the correspondence is one-to-one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号