首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We give, as L grows to infinity, an explicit lower bound of order \({L^{\frac{n}{m}}}\) for the expected Betti numbers of the vanishing locus of a random linear combination of eigenvectors of P with eigenvalues below L. Here, P denotes an elliptic self-adjoint pseudo-differential operator of order \({m > 0}\), bounded from below and acting on the sections of a Riemannian line bundle over a smooth closed n-dimensional manifold M equipped with some Lebesgue measure. In fact, for every closed hypersurface \({\Sigma}\) of \({\mathbb{R}^n}\), we prove that there exists a positive constant \({p_\Sigma}\) depending only on \({\Sigma}\), such that for every large enough L and every \({x \in M}\), a component diffeomorphic to \({\Sigma}\) appears with probability at least \({p_\Sigma}\) in the vanishing locus of a random section and in the ball of radius \({L^{-\frac{1}{m}}}\) centered at x. These results apply in particular to Laplace–Beltrami and Dirichlet-to-Neumann operators.  相似文献   

2.
We study the critical behavior for inhomogeneous versions of the Curie-Weiss model, where the coupling constant \({J_{ij}(\beta)}\) for the edge \({ij}\) on the complete graph is given by \({J_{ij}(\beta)=\beta w_iw_j/( {\sum_{k\in[N]}w_k})}\). We call the product form of these couplings the rank-1 inhomogeneous Curie-Weiss model. This model also arises [with inverse temperature \({\beta}\) replaced by \({\sinh(\beta)}\) ] from the annealed Ising model on the generalized random graph. We assume that the vertex weights \({(w_i)_{i\in[N]}}\) are regular, in the sense that their empirical distribution converges and the second moment converges as well. We identify the critical temperatures and exponents for these models, as well as a non-classical limit theorem for the total spin at the critical point. These depend sensitively on the number of finite moments of the weight distribution. When the fourth moment of the weight distribution converges, then the critical behavior is the same as on the (homogeneous) Curie-Weiss model, so that the inhomogeneity is weak. When the fourth moment of the weights converges to infinity, and the weights satisfy an asymptotic power law with exponent \({\tau}\) with \({\tau\in(3,5)}\), then the critical exponents depend sensitively on \({\tau}\). In addition, at criticality, the total spin \({S_N}\) satisfies that \({S_N/N^{(\tau-2)/(\tau-1)}}\) converges in law to some limiting random variable whose distribution we explicitly characterize.  相似文献   

3.
We consider a four-dimensional simplicial complex and the minisuperspace general relativity system on it. The metric is flat in most parts of the interior of every 4-simplex, with the exception of a thin layer of thickness \({\propto \varepsilon}\) along each three-dimensional face. In this layer the metric undergoes a jump between the two 4-simplices sharing this face. At \({\varepsilon \to 0}\) this jump would become a discontinuity. However, a discontinuity of the metric induced on the face is not allowed in general relativity: terms arise in the Einstein action tending to infinity as \({\varepsilon \to 0}\) . In the path integral approach, these terms lead to the pre-exponent factor with δ-functions requiring that the metric induced on the faces be continuous. That is, the 4-simplices fit on their common faces. The other part of the path integral measure corresponds to the action, which is the sum of independent terms over the 4-simplices. Therefore this part of the path integral measure is the product of independent measures over the 4-simplices. The result obtained is in accordance with our previous one obtained from symmetry considerations.  相似文献   

4.
In relativity, the energy of a moving particle depends on the observer, and the rest mass is the minimal energy seen among all observers. The Wang–Yau quasi-local mass for a surface in spacetime introduced in Wang and Yau (Phys Rev Lett 102(2):021101, 2009 ; Commun Math Phys 288(3):919–942, 2009) is defined by minimizing quasi-local energy associated with admissible isometric embeddings of the surface into the Minkowski space. A critical point of the quasi-local energy is an isometric embedding satisfying the Euler–Lagrange equation. In this article, we prove results regarding both local and global minimizing properties of critical points of the Wang–Yau quasi-local energy. In particular, under a condition on the mean curvature vector we show a critical point minimizes the quasi-local energy locally. The same condition also implies that the critical point is globally minimizing among all axially symmetric embedding provided the image of the associated isometric embedding lies in a totally geodesic Euclidean 3-space.  相似文献   

5.
Given a fusion category \({\mathcal C}\) and an indecomposable \({\mathcal C}\)-module category \({\mathcal M}\), the fusion category \({\mathcal C}^*_{_{{\mathcal M}}}\) of \({\mathcal C}\)-module endofunctors of \({\mathcal M}\) is called the (Morita) dual fusion category of \({\mathcal C}\) with respect to \({\mathcal M}\). We describe tensor functors between two arbitrary duals \({\mathcal C}^*_{_{{\mathcal M}}}\) and \({\mathcal D}^*_{\mathcal N}\) in terms of data associated to \({\mathcal C}\) and \({\mathcal D}\). We apply the results to G-equivariantizations of fusion categories and group-theoretical fusion categories. We describe the orbits of the action of the Brauer–Picard group on the set of module categories and we propose a categorification of the Rosenberg–Zelinsky sequence for fusion categories.  相似文献   

6.
It is well known that quantum correlations for bipartite dichotomic measurements are those of the form \({\gamma=(\langle u_i,v_j\rangle)_{i,j=1}^n}\), where the vectors ui and vj are in the unit ball of a real Hilbert space. In this work we study the probability of the nonlocal nature of these correlations as a function of \({\alpha=\frac{m}{n}}\), where the previous vectors are sampled according to the Haar measure in the unit sphere of \({\mathbb R^m}\). In particular, we prove the existence of an \({\alpha_0 > 0}\) such that if \({\alpha\leq \alpha_0}\), \({\gamma}\) is nonlocal with probability tending to 1 as \({n\rightarrow \infty}\), while for \({\alpha > 2}\), \({\gamma}\) is local with probability tending to 1 as \({n\rightarrow \infty}\).  相似文献   

7.
We consider random Schrödinger operators of the form \({\Delta+\xi}\), where \({\Delta}\) is the lattice Laplacian on \({\mathbb{Z}^{d}}\) and \({\xi}\) is an i.i.d. random field, and study the extreme order statistics of the Dirichlet eigenvalues for this operator restricted to large but finite subsets of \({\mathbb{Z}^{d}}\). We show that, for \({\xi}\) with a doubly-exponential type of upper tail, the upper extreme order statistics of the eigenvalues falls into the Gumbel max-order class, and the corresponding eigenfunctions are exponentially localized in regions where \({\xi}\) takes large, and properly arranged, values. The picture we prove is thus closely connected with the phenomenon of Anderson localization at the spectral edge. Notwithstanding, our approach is largely independent of existing methods for proofs of Anderson localization and it is based on studying individual eigenvalue/eigenfunction pairs and characterizing the regions where the leading eigenfunctions put most of their mass.  相似文献   

8.
In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild–de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle \(\alpha \) of the light ray by constructing a quadrilateral \(\varSigma ^4\) on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) determined by the optical metric \(\bar{g}_{ij}\). On the basis of the definition of the total deflection angle \(\alpha \) and the Gauss–Bonnet theorem, we derive two formulas to calculate the total deflection angle \(\alpha \); (1) the angular formula that uses four angles determined on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) or the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\) being a slice of constant time t and (2) the integral formula on the optical reference geometry \({\mathscr {M}}^\mathrm{opt}\) which is the areal integral of the Gaussian curvature K in the area of a quadrilateral \(\varSigma ^4\) and the line integral of the geodesic curvature \(\kappa _g\) along the curve \(C_{\varGamma }\). As the curve \(C_{\varGamma }\), we introduce the unperturbed reference line that is the null geodesic \(\varGamma \) on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting \(\varGamma \) vertically onto the curved \((r, \phi )\) subspace \({\mathscr {M}}^\mathrm{sub}\). We demonstrate that the two formulas give the same total deflection angle \(\alpha \) for the Schwarzschild and the Schwarzschild–de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein–Shapiro’s formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild–de Sitter case, there appear order \({\mathscr {O}}(\varLambda m)\) terms in addition to the Schwarzschild-like part, while order \({\mathscr {O}}(\varLambda )\) terms disappear.  相似文献   

9.
We consider the weakly asymmetric simple exclusion process in the presence of a slow bond and starting from the invariant state, namely the Bernoulli product measure of parameter \({\rho \in (0,1)}\). The rate of passage of particles to the right (resp. left) is \({\frac{1}{2} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{1}{2} - \frac{a}{2n^{\gamma}}}\)) except at the bond of vertices \({\{-1,0\}}\) where the rate to the right (resp. left) is given by \({\frac{\alpha}{2n^\beta} + \frac{a}{2n^{\gamma}}}\) (resp. \({\frac{\alpha}{2n^\beta}-\frac{a}{2n^{\gamma}}}\)). Above, \({\alpha > 0}\), \({\gamma \geq \beta \geq 0}\), \({a\geq 0}\). For \({\beta < 1}\), we show that the limit density fluctuation field is an Ornstein–Uhlenbeck process defined on the Schwartz space if \({\gamma > \frac{1}{2}}\), while for \({\gamma = \frac{1}{2}}\) it is an energy solution of the stochastic Burgers equation. For \({\gamma \geq \beta =1}\), it is an Ornstein–Uhlenbeck process associated to the heat equation with Robin’s boundary conditions. For \({\gamma \geq \beta > 1}\), the limit density fluctuation field is an Ornstein–Uhlenbeck process associated to the heat equation with Neumann’s boundary conditions.  相似文献   

10.
In this proceeding, we present our recent work on decay behaviors of the Pc hadronic molecules, which can help to disentangle the nature of the two Pc pentaquark-like structures. The results turn out that the relative ratio of the decays of P c + (4380) to \({\bar D *}{\Lambda _c}\) and Jp is very different for Pc being a \({\bar D *}{\Sigma _c}\) or \(\bar D\Sigma _c *\) bound state with \({J^P} = \frac{{{3 - }}}{2}\) And from the total decay width, we find that Pc(4380) being a \(\bar D\Sigma _c *\) molecule state with \({J^P} = \frac{{{3 - }}}{2}\) and Pc(4450) being a \({\bar D *}{\Sigma _c}\) molecule state with \({J^P} = \frac{{{5 + }}}{2}\) is more favorable to the experimental data.  相似文献   

11.
We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime \({\beta < \beta_c}\), and the mean-field lower bound \({\mathbb{P}_\beta[0\longleftrightarrow \infty ]\ge (\beta-\beta_c)/\beta}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that for any \({\beta < \beta_c}\), the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for \({\beta < \beta_c}\), and the mean-field lower bound \({\langle \sigma_0\rangle_\beta^+\ge \sqrt{(\beta^2-\beta_c^2)/\beta^2}}\) for \({\beta > \beta_c}\). For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for \({\beta < \beta_c}\).  相似文献   

12.
We consider time delay for the Dirac equation. A new method to calculate the asymptotics of the expectation values of the operator \({\int\limits_{0} ^{\infty}{\rm e}^{iH_{0}t}\zeta(\frac{\vert x\vert }{R}) {\rm e}^{-iH_{0}t}{\rm d}t}\), as \({R \rightarrow \infty}\), is presented. Here, H0 is the free Dirac operator and \({\zeta\left(t\right)}\) is such that \({\zeta\left(t\right) = 1}\) for \({0 \leq t \leq 1}\) and \({\zeta\left(t\right) = 0}\) for \({t > 1}\). This approach allows us to obtain the time delay operator \({\delta \mathcal{T}\left(f\right)}\) for initial states f in \({\mathcal{H} _{2}^{3/2+\varepsilon}(\mathbb{R}^{3};\mathbb{C}^{4})}\), \({\varepsilon > 0}\), the Sobolev space of order \({3/2+\varepsilon}\) and weight 2. The relation between the time delay operator \({\delta\mathcal{T}\left(f\right)}\) and the Eisenbud–Wigner time delay operator is given. In addition, the relation between the averaged time delay and the spectral shift function is presented.  相似文献   

13.
We explore the breaking effects of the SU(3) flavor symmetry in the singly Cabibbo-suppressed anti-triplet charmed baryon decays of \(\mathbf{B}_c\rightarrow \mathbf{B}_n M\), with \(\mathbf{B}_c=(\Xi _c^0,\Xi _c^+,\Lambda _c^+)\) and \(\mathbf{B}_n(M)\) the baryon (pseudo-scalar) octets. We find that these breaking effects can be used to account for the experimental data on the decay branching ratios of \({\mathcal {B}}(\Lambda _c^+\rightarrow \Sigma ^{0} K^{+},\Lambda ^{0} K^{+})\) and \(R'_{K/\pi }={\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- K^+)\)/\({\mathcal {B}}(\Xi ^0_c \rightarrow \Xi ^- \pi ^+)\). In addition, we obtain that \({\mathcal {B}}(\Xi _{c}^{0} \rightarrow \Xi ^{-} K^{+},\Sigma ^{-} \pi ^{+})=(4.6 \pm 1.7,12.8 \pm 3.1)\times 10^{-4}\), \({\mathcal {B}}(\Xi _c^0\rightarrow pK^-,\Sigma ^+\pi ^-)=(3.0 \pm 1.0, 5.2 \pm 1.6)\times 10^{-4}\) and \({\mathcal {B}}(\Xi _c^+\rightarrow \Sigma ^{0(+)} \pi ^{+(0)})=(10.3 \pm 1.7)\times 10^{-4}\), which all receive significant contributions from the breaking effects, and can be tested by the BESIII and LHCb experiments.  相似文献   

14.
Motivated by perturbation theory, we prove that the nonlinear part \({H^{*}}\) of the KdV Hamiltonian \({H^{kdv}}\), when expressed in action variables \({I = (I_{n})_{n \geqslant 1}}\), extends to a real analytic function on the positive quadrant \({\ell^{2}_{+}(\mathbb{N})}\) of \({\ell^{2}(\mathbb{N})}\) and is strictly concave near \({0}\). As a consequence, the differential of \({H^{*}}\) defines a local diffeomorphism near 0 of \({\ell_{\mathbb{C}}^{2}(\mathbb{N})}\). Furthermore, we prove that the Fourier-Lebesgue spaces \({\mathcal{F}\mathcal{L}^{s,p}}\) with \({-1/2 \leqslant s \leqslant 0}\) and \({2 \leqslant p < \infty}\), admit global KdV-Birkhoff coordinates. In particular, it means that \({\ell^{2}_+(\mathbb{N})}\) is the space of action variables of the underlying phase space \({\mathcal{F}\mathcal{L}^{-1/2,4}}\) and that the KdV equation is globally in time \({C^{0}}\)-well-posed on \({\mathcal{F}\mathcal{L}^{-1/2,4}}\).  相似文献   

15.
In this article we investigate spectral properties of the coupling \({H + V_\lambda}\), where \({H = -i\alpha \cdot \nabla+m\beta}\) is the free Dirac operator in \({\mathbb{R}^3}\), \({m > 0}\) and \({V_\lambda}\) is an electrostatic shell potential (which depends on a parameter \({\lambda \in \mathbb{R}}\)) located on the boundary of a smooth domain in \({\mathbb{R}^3}\). Our main result is an isoperimetric-type inequality for the admissible range of \({\lambda}\)’s for which the coupling \({H + V_\lambda}\) generates pure point spectrum in \({(-m, m)}\). That the ball is the unique optimizer of this inequality is also shown. Regarding some ingredients of the proof, we make use of the Birman–Schwinger principle adapted to our setting in order to prove some monotonicity property of the admissible \({\lambda}\)’s, and we use this to relate the endpoints of the admissible range of \({\lambda}\)’s to the sharp constant of a quadratic form inequality, from which the isoperimetric-type inequality is derived.  相似文献   

16.
We consider Schrödinger equations for N number of particles in (classical) electro-magnetic fields that are interacting with each other via time dependent inter-particle potentials. We prove that they uniquely generate unitary propagators \({\{U(t,s), t,s \in \mathbb{R}\}}\) on the state space \({\mathcal{H}}\) under the conditions that fields are spatially smooth and do not grow too rapidly at infinity so that propagators for single particles satisfy Strichartz estimates locally in time, and that local singularities of inter-particle potentials are not too strong that time frozen Hamiltonians define natural selfadjoint realizations in \({\mathcal{H}}\). We also show, under very mild additional assumptions on the time derivative of inter-particle potentials, that propagators possess the domain of definition of the quantum harmonic oscillator \({\Sigma(2)}\) as an invariant subspace such that, for initial states in \({\Sigma(2)}\), solutions are C1 functions of the time variable with values in \({\mathcal{H}}\). New estimates of Strichartz type for propagators for N independent particles in the field will be proved and used in the proof.  相似文献   

17.
A simple model of an atom interacting with the quantized electromagnetic field is studied. The atom has a finite mass m, finitely many excited states and an electric dipole moment, \({\vec{d}_0 = -\lambda_{0} \vec{d}}\), where \({\| d^{i}\| = 1, i = 1, 2, 3,}\) and \({\lambda_0}\) is proportional to the elementary electric charge. The interaction of the atom with the radiation field is described with the help of the Ritz Hamiltonian, \({-\vec{d}_0 \cdot \vec{E}}\), where \({\vec{E}}\) is the electric field, cut off at large frequencies. A mathematical study of the Lamb shift, the decay channels and the life times of the excited states of the atom is presented. It is rigorously proven that these quantities are analytic functions of the momentum \({\vec{p}}\) of the atom and of the coupling constant \({\lambda_0}\), provided \({\vert\vec{p} \vert < mc}\) and \({\vert \Im \vec{p} \vert}\) and \({\vert \lambda_{0} \vert}\) are sufficiently small. The proof relies on a somewhat novel inductive construction involving a sequence of ‘smooth Feshbach–Schur maps’ applied to a complex dilatation of the original Hamiltonian, which yields an algorithm for the calculation of resonance energies that converges super-exponentially fast.  相似文献   

18.
It is well known that the quantum double \({D(N\subset M)}\) of a finite depth subfactor \({N\subset M}\), or equivalently the Drinfeld center of the even part fusion category, is a unitary modular tensor category. It is big open conjecture that all (unitary) modular tensor categories arise from conformal field theory. We show that for every subfactor \({N\subset M}\) with index \({[M:N] < 4}\) the quantum double \({D(N\subset M)}\) is realized as the representation category of a completely rational conformal net. In particular, the quantum double of \({E_6}\) can be realized as a \({\mathbb{Z}_2}\)-simple current extension of \({{{\rm SU}(2)}_{10}\times {{\rm Spin}(11)}_1}\) and thus is not exotic in any sense. As a byproduct, we obtain a vertex operator algebra for every such subfactor. We obtain the result by showing that if a subfactor \({N\subset M }\) arises from \({\alpha}\)-induction of completely rational nets \({\mathcal{A}\subset \mathcal{B}}\) and there is a net \({\tilde{\mathcal{A}}}\) with the opposite braiding, then the quantum \({D(N\subset M)}\) is realized by completely rational net. We construct completely rational nets with the opposite braiding of \({{{\rm SU}(2)}_k}\) and use the well-known fact that all subfactors with index \({[M:N] < 4}\) arise by \({\alpha}\)-induction from \({{{\rm SU}(2)}_k}\).  相似文献   

19.
We obtain a natural extension of the Vlasov–Poisson system for stellar dynamics to spaces of constant Gaussian curvature \({\kappa \ne 0}\): the unit sphere \({\mathbb S^2}\), for \({\kappa > 0}\), and the unit hyperbolic sphere \({\mathbb H^2}\), for \({\kappa < 0}\). These equations can be easily generalized to higher dimensions. When the particles move on a geodesic, the system reduces to a 1-dimensional problem that is more singular than the classical analogue of the Vlasov–Poisson system. In the analysis of this reduced model, we study the well-posedness of the problem and derive Penrose-type conditions for linear stability around homogeneous solutions in the sense of Landau damping.  相似文献   

20.
A quantum system (with Hilbert space \({\mathcal {H}_{1}}\)) entangled with its environment (with Hilbert space \({\mathcal {H}_{2}}\)) is usually not attributed to a wave function but only to a reduced density matrix \({\rho_{1}}\). Nevertheless, there is a precise way of attributing to it a random wave function \({\psi_{1}}\), called its conditional wave function, whose probability distribution \({\mu_{1}}\) depends on the entangled wave function \({\psi \in \mathcal {H}_{1} \otimes \mathcal {H}_{2}}\) in the Hilbert space of system and environment together. It also depends on a choice of orthonormal basis of \({\mathcal {H}_{2}}\) but in relevant cases, as we show, not very much. We prove several universality (or typicality) results about \({\mu_{1}}\), e.g., that if the environment is sufficiently large then for every orthonormal basis of \({\mathcal {H}_{2}}\), most entangled states \({\psi}\) with given reduced density matrix \({\rho_{1}}\) are such that \({\mu_{1}}\) is close to one of the so-called GAP (Gaussian adjusted projected) measures, \({GAP(\rho_{1})}\). We also show that, for most entangled states \({\psi}\) from a microcanonical subspace (spanned by the eigenvectors of the Hamiltonian with energies in a narrow interval \({[E, E+ \delta E]}\)) and most orthonormal bases of \({\mathcal {H}_{2}}\), \({\mu_{1}}\) is close to \({GAP(\rm {tr}_{2} \rho_{mc})}\) with \({\rho_{mc}}\) the normalized projection to the microcanonical subspace. In particular, if the coupling between the system and the environment is weak, then \({\mu_{1}}\) is close to \({GAP(\rho_\beta)}\) with \({\rho_\beta}\) the canonical density matrix on \({\mathcal {H}_{1}}\) at inverse temperature \({\beta=\beta(E)}\). This provides the mathematical justification of our claim in Goldstein et al. (J Stat Phys 125: 1193–1221, 2006) that GAP measures describe the thermal equilibrium distribution of the wave function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号