首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Molecularly imprinted polymers (MIPs) for benzimidazole compounds have been synthesized by precipitation polymerization using thiabendazole (TBZ) as template, methacrylic acid as functional monomer, ethyleneglycol dimethacrylate (EDMA) and divinylbenzene (DVB) as cross-linkers and a mixture of acetonitrile and toluene as porogen. The experiments carried out by molecularly imprinted solid phase extraction (MISPE) in cartridges demonstrated the imprint effect in both imprinted polymers. MIP–DVB enabled a much higher breakthrough volume than MIP–EDMA, and thus was selected for further experiments. The ability of this MIP for the selective recognition of other benzimidazole compounds (albendazole, benomyl, carbendazim, fenbendazole, flubendazole and fuberidazole) was evaluated. The obtained results revealed the high selectivity of the imprinted polymer towards all the selected benzimidazole compounds.An off-line analytical methodology based on a MISPE procedure has been developed for the determination of benzimidazole compounds in tap, river and well water samples at concentration levels below the legislated maximum concentration levels (MCLs) with quantitative recoveries. Additionally, an on-line preconcentration procedure based on the use of a molecularly imprinted polymer as selective stationary phase in HPLC is proposed as a fast screening method for the evaluation of the presence of benzimidazole compounds in water samples.  相似文献   

2.
A molecularly imprinted polymer designed for the selective extraction of donepezil from serum samples was synthesized using a noncovalent molecular imprinting approach. The molecularly imprinted polymer was evaluated chromatographically and then its affinity for donepezil was confirmed by solid‐phase extraction. The optimal conditions for solid‐phase extraction were provided by cartridge conditioning using acidified water purified from a Milli‐Q system, sample loading under basic aqueous conditions, clean‐up using acetonitrile, and elution with methanol/tetrahydrofuran. Desirable molecular recognition properties of the molecularly imprinted polymer led to good donepezil recoveries (90–102%). The data indicated that the imprinted polymer has a perfect selectivity and affinity for donepezil and could be used for selective extraction and analysis of donepezil in human serum.  相似文献   

3.
A prepared molecularly imprinted polymer with ethyl p‐hydroxybenzoate as template molecule was applied for the first time to a homemade solid‐phase microextraction fiber. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was characterized by scanning electron microscopy and thermogravimetric analysis. Various parameters were investigated, including extraction temperature, extraction time, and desorption time. Under the optimum extraction conditions, the molecularly imprinted polymer‐coated solid‐phase microextraction fiber exhibited higher selectivity with greater extraction capacity toward parabens compared with the nonimprinted polymer‐coated solid‐phase microextraction fiber and commercial fibers. The molecularly imprinted polymer‐coated solid‐phase microextraction fiber was tested using gas chromatography to determine parabens, including methyl p‐hydroxybenzoate, ethyl p‐hydroxybenzoate, and propyl p‐hydroxybenzoate. The linear ranges were 0.01–10 μg/mL with a correlation coefficient above 0.9943. The detection limits (under signal‐to‐noise ratio of 3) were below 0.30 μg/L. The fiber was successfully applied to the simultaneous analysis of three parabens in spiked soy samples with satisfactory recoveries of 95.48, 97.86, and 92.17%, respectively. The relative standard deviations (n=6) were within 2.83–3.91%. The proposed molecularly imprinted polymer‐coated solid‐phase microextraction method is suitable for selective extraction and determination of trace parabens in food samples.  相似文献   

4.
Sample pretreatment is essential for the analysis of complicated real samples due to their complex matrices and low analyte concentrations. Among all sample pretreatment methods, solid‐phase extraction is arguably the most frequently used one. However, the majority of available solid‐phase extraction adsorbents suffer from limited selectivity. Molecularly imprinted polymers are a type of tailor‐made artificial antibodies and receptors with specific recognition sites for target molecules. Using molecularly imprinted polymers instead of conventional adsorbents can greatly improve the selectivity of solid‐phase extraction, and therefore molecularly imprinted polymer‐based solid‐phase extraction has been widely applied to separation, clean up and/or preconcentration of target analytes in various kinds of real samples. In this article, after a brief introduction, the recent developments and applications of molecularly imprinted polymer‐based solid‐phase extraction for determination of different analytes in complicated real samples during the 2015‐2020 are reviewed systematically, including the solid‐phase extraction modes, molecularly imprinted adsorbent types and their preparations, and the practical applications of solid‐phase extraction to various real samples (environmental, food, biological, and pharmaceutical samples). Finally, the challenges and opportunities of using molecularly imprinted polymer‐based solid‐phase extraction for real sample analysis are discussed.  相似文献   

5.
A novel l‐ phenylalanine molecularly imprinted solid‐phase extraction sorbent was synthesized by the combination of Pickering emulsion polymerization and ion‐pair dummy template imprinting. Compared to other polymerization methods, the molecularly imprinted polymers thus prepared exhibit a high specific surface, large pore diameter, and appropriate particle size. The key parameters for solid‐phase extraction were optimized, and the result indicated that the molecularly imprinted polymer thus prepared exhibits a good recovery of 98.9% for l‐ phenylalanine. Under the optimized conditions of the procedure, an analytical method for l‐ phenylalanine was well established. By comparing the performance of the molecularly imprinted polymer and a commercial reverse‐phase silica gel, the obtained molecularly imprinted polymer as an solid‐phase extraction sorbent is more suitable, exhibiting high precision (relative standard deviation 3.2%, n = 4) and a low limit of detection (60.0 ± 1.9 nmol·L?1) for the isolation of l‐ phenylalanine. Based on these results, the combination of the Pickering emulsion polymerization and ion‐pair dummy template imprinting is effective for preparing selective solid‐phase extraction sorbents for the separation of amino acids and organic acids from complex biological samples.  相似文献   

6.
分子印迹聚合物具有抗恶劣环境、选择性高、稳定性好等特点,广泛应用于复杂样品的前处理。采用结构类似物作为替代模板分子,可以解决分子印迹聚合物制备时目标物溶解性差的问题,替代模板分子印迹聚合物不仅对目标分析物具有选择性识别能力,还可以避免模板泄露对痕量分析造成的影响。本文综述了替代模板分子印迹技术在样品前处理中的应用进展,包括替代模板分子印迹技术在固相萃取、固相微萃取、色谱固定相、基质固相分散萃取中的应用,最后对替代模板分子印迹技术在未来的样品前处理中的研究进行了展望。  相似文献   

7.
The paper presents a general overview of the use of nanoparticles to perform sample preparation. In this way the main uses of nanoparticles to carry out solid phase extraction, solid phase microextraction, liquid-liquid extraction and filtration techniques are described for a wide range of nanoparticles including carbon nanoparticles, metallic, silica and molecular imprinted polymer nanoparticles.  相似文献   

8.
Toward improving the selective adsorption performance of molecularly imprinted polymers in strong polar solvents, in this work, a new ionic liquid functional monomer, 1‐butyl‐3‐vinylimidazolium bromide, was used to synthesize sulfamethoxazole imprinted polymer in methanol. The resulting molecularly imprinted polymer was characterized by Fourier transform infrared spectra and scanning electron microscopy, and the rebinding mechanism of the molecularly imprinted polymer for sulfonamides was studied. A static equilibrium experiment revealed that the as‐obtained molecularly imprinted polymer had higher molecular recognition for sulfonamides (e.g., sulfamethoxazole, sulfamonomethoxine, and sulfadiazine) in methanol; however, its adsorption of interferent (e.g., diphenylamine, metronidazole, 2,4‐dichlorophenol, and m‐dihydroxybenzene) was quite low. 1H NMR spectroscopy indicated that the excellent recognition performance of the imprinted polymer was based primarily on hydrogen bond, electrostatic and π‐π interactions. Furthermore, the molecularly imprinted polymer can be employed as a solid phase extraction sorbent to effectively extract sulfamethoxazole from a mixed solution. Combined with high‐performance liquid chromatography analysis, a valid molecularly imprinted polymer‐solid phase extraction protocol was established for extraction and detection of trace sulfamethoxazole in spiked soil and sediment samples, and with a recovery that ranged from 93–107%, and a relative standard deviation of lower than 9.7%.  相似文献   

9.
利用分子印迹技术预处理生物样品中头孢药物的研究   总被引:9,自引:0,他引:9  
黄招发  汤又文 《分析化学》2005,33(10):1424-1426
优化了头孢硫脒分子印迹聚合物的合成条件,探讨了分子印迹技术和固相萃取联用对血浆中头孢硫脒的分离富集,发现用4-乙烯基吡啶作功能单体合成的分子印迹聚合物作为固相萃取填充料,能定量吸附血浆中的头孢硫脒,并初步研究了其吸附机理。  相似文献   

10.
采用分子印迹技术合成了吡哌酸分子印迹聚合物。运用平衡结合实验研究了聚合物的吸附特性和选择性识别能力。Scatchard分析表明,在本文所研究的浓度范围内,聚合物中形成了两类不同的结合位点。吡哌酸分子印迹聚合物对吡哌酸呈现较高的选择识别特性,可作为固相萃取剂,在人血清吡哌酸的分析中对样品进行了有效的提取和净化。  相似文献   

11.
The aim of this work was to evaluate the use of a molecularly imprinted polymer as a selective solid‐phase extraction sorbent for the clean‐up and pre‐concentration of patulin from apple‐based food products. Ultra high pressure liquid chromatography coupled to ultraviolet absorbance detection was used for the analysis of patulin. The molecularly imprinted polymer was applied, for the first time, to the determination of patulin in apple juice, puree and jam samples spiked within the maximum levels specified by the European Commission No. 1881/2006. High recoveries (>77%) were obtained. The method was validated and found to be linear in the range 2–100 μg/kg with correlation coefficients greater than 0.965 and repeatability relative standard deviation below 11% in all cases. Compared with dispersive solid‐phase extraction (QuEChERS method) and octadecyl sorbent, the molecularly imprinted polymer showed higher recoveries and selectivity for patulin. The application of Affinisep molecularly imprinted polymer as a selective sorbent material for detection of patulin fulfilled the method performance criteria required by the Commission Regulation No. 401/2006, demonstrating the suitability of the technique for the control of patulin at low ppb levels in different apple‐based foods such as juice, puree and jam samples.  相似文献   

12.
A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid‐phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non‐imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non‐imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3–104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 μg/L, and the limit of quantitation was 2.3 μg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high‐performance liquid chromatography.  相似文献   

13.
A simple, sensitive, and selective molecularly imprinted solid‐phase extraction and spectrophotometric method has been developed for the clean‐up and preconcentration of indapamide from human urine. Molecularly imprinted polymers were prepared by a non‐covalent imprinting approach using indapamide as a template molecule, 2‐(trifluoromethyl) acrylic acid as a functional monomer, ethylene glycol dimethacrylate as a crosslinker, N,N‐azobisisobutyronitrile as a thermal initiator and acetonitrile as a porogenic solvent. A non‐imprinted polymer was also prepared in the same way, but in the absence of template. Molecularly imprinted polymer and non‐imprinted polymer sorbents were dry‐packed into solid‐phase extraction cartridges. Eluates from cartridges were analyzed using a spectrophotometer for the determination of indapamide by referring to the calibration curve in the range 0.14–1.50 μg/mL. Preconcentration factor, limit of detection, and limit of quantification were 16.30, 0.025 μg/mL, and 0.075 μg/mL, respectively. A relatively high imprinting factor (9.3) was also achieved and recovery values for the indapamide spiked into human urine were in the range of 80.1–81.2%. In addition, relatively low within‐day (0.17–0.42%) and between‐day (1.1–1.4%) precision values were obtained as well. The proposed molecularly imprinted solid‐phase extraction and spectrophotometric method was successfully applied to selective extraction, preconcentration, and determination of indapamide from human urine samples.  相似文献   

14.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

15.
As signal molecules, auxins play an important role in mediating plant growth. Due to serious interfering substances in plants, it is difficult to accurately detect auxins with traditional solid‐phase extraction methods. To improve the selectivity of sample pretreatment, a novel molecularly imprinted polymer ‐coated solid‐phase microextraction fiber, which could be coupled directly to high‐performance liquid chromatography, was prepared with indole acetic acid as template molecule for the selective extraction of auxins. The factors influencing the polymer formation, such as polymerization solvent, cross‐linker, and polymerization time, were investigated in detail to enhance the performance of indole acetic acid‐molecularly imprinted polymer coating. The morphological and chemical stability of this molecularly imprinted polymer‐coated fiber was characterized by scanning electron microscopy, infrared spectrometry, and thermal analysis. The extraction capacity of the molecularly imprinted polymer‐coated solid‐phase microextraction fiber was evaluated for the selective extraction of indole acetic acid and indole‐3‐pyruvic acid followed by high‐performance liquid chromatography analysis. The linear range for indole acetic acid and indole‐3‐pyruvic acid was 1–100 µg/L and their detection limit was 0.5 µg/L. The method was applied to the simultaneous determination of two auxins in two kinds of tobacco (Nicotiana tabacum L and Nicotiana rustica L) samples, with recoveries range from 82.1 to 120.6%.  相似文献   

16.
采用沉淀聚合法以橙皮素为模板分子,2-乙烯基吡啶为功能单体,二甲基丙烯酸乙二醇酯为交联剂,合成了橙皮素分子印迹聚合物。利用紫外光谱法确定了最佳功能单体与配比,优化了合成条件。采用傅立叶变换红外光谱、扫描电子显微镜、静态吸附对聚合物进行表征。实验结果表明,分子印迹聚合物的吸附性能明显优于空白印迹聚合物,且此聚合物对柚皮苷、橙皮苷、柚皮素和橙皮素的相对选择系数分别为1.40,1.39,1.59和2.89,表明该分子印迹聚合物对4种黄烷酮有较好的选择性。将印迹聚合物作为固相萃取填料,对枳实提取液进行分离和富集,结果表明上述4种黄烷酮的提取率分别为72.6%,61.1%,95.4%和93.5%,分离富集效果良好,大大提高了枳实中4种黄烷酮的提取效率。  相似文献   

17.
The computer‐assisted design and synthesis of molecularly imprinted polymers for the simultaneous capture of six carbamate pesticides from environmental water are reported in this work. The quantum mechanical computational approach was employed to design the molecularly imprinted polymers with carbofuran as template. The interaction energies between the template molecule and different functional monomers in various solvents were calculated to assist in the selection of the functional monomer and porogen. The optimised molecularly imprinted polymer was subsequently used as a class‐selective sorbent in solid‐phase extraction for pre‐concentration and determination of carbamates from environmental water. The parameters influencing the extraction efficiency of the molecularly imprinted solid‐phase extraction procedure were systematically investigated to facilitate the class‐selective extraction. For the proposed method, linearity was observed over the range of 2–500 ng/mL with the correlation coefficient ranging from 0.9760 to 1.000. The limits of detection ranged from 0.2 to 1.2 ng/mL, and the limit of quantification was 4 ng/mL. These results confirm that computer‐assisted design is an effective evaluation tool for molecularly imprinted polymers synthesis, and that molecularly imprinted solid‐phase extraction can be applied to the simultaneous analysis of carbamates in environmental water.  相似文献   

18.
Computational simulation and Doehlert experimental optimization were done for the rational design of a core-shell molecularly imprinted polymer (CS-MIP) for use in the highly selective separation of Tanshinone IIA (TSIIA) from the crude extracts of Salvia miltiorrhiza Bunge (SMB). The functional monomer layer of the polymer shells directed the selective occurrence of imprinting polymerization at the surface of silica through the copolymerization of vinyl end groups with functional monomers and also drove TSIIA templates into the formed polymer shells through the charge-transfer complex interactions between TSIIA and the functional monomer layer. As a result, the maximum rebinding capacity was achieved with the use of optimal grafting ratio by the Doehlert design. The CS-MIP exhibited high recognition selectivity and binding affinity to TSIIA. When the imprinted particles were used as dispersive solid phase extraction sorbents, the recovery yield of TSIIA reached 93% by a one-step extraction from the crude extracts of SMB, and the purity of TSIIA was larger than 98% by HPLC analysis. These results show the possibility of a highly selective separation and enrichment of TSIIA from the SMB using the TSIIA-imprinted core-shell molecularly imprinted polymers.  相似文献   

19.
A novel magnetic molecularly imprinted polymer adsorbing material was successfully synthesized to detect ribavirin in animal feedstuff. Molecularly imprinted polymer was prepared through surface polymerization by using ribavirin as template molecule, methyl methacrylate, and γ‐methacryloxypropyl trimethoxy silane functionalized magnetic mesoporous silica as bifunctional monomers, and ethylene diglycidyl ether as crosslinking agent. The prepared magnetic molecularly imprinted polymer was characterized by scanning electron microscopy and infrared spectroscopy. Static and dynamic adsorption experiments and selective adsorption analysis were performed to evaluate the adsorption and selectivity of magnetic molecularly imprinted polymer. Different experiments were conducted to optimize the magnetic solid‐phase extraction conditions. Under optimal experimental conditions, a magnetic molecularly imprinted solid‐phase extraction coupled with high‐performance liquid chromatography method was successfully developed for ribavirin detection. The established method achieved a satisfactory linear range of 0.20–50 mg/L (R> 0.99) and a low detection limit (0.081 mg/kg). An average recovery of 92–105% with relative standard deviation of <6.5% was obtained upon the application of the developed method to detect ribavirin in real feedstuff samples. Thus, established method can be used for the rapid and simple separation and detection of added ribavirin in feedstuff.  相似文献   

20.
Pyrrolizidine alkaloids are the most widely distributed natural toxins, and pyrrolizidine alkaloid‐containing herbal medicines are probably the most common poisonous plants affecting humans. We reported pyrrolizidine alkaloid‐molecularly imprinted polymer solid‐phase microextraction for the selective adsorption of toxic pyrrolizidine alkaloids from herbal medicine. A sulfonic compound, sodium allylsulfonate, was chosen as the functional monomer to interact with pyrrolizidine alkaloids through strong ionic interaction. To avoid template leakage and for the aim of cost saving, a relatively cheap dummy template was used for the fabrication of molecularly imprinted polymer‐solid‐phase microextraction fibers. The obtained fibers showed selective adsorption ability for four pyrrolizidine alkaloids, including europine, echimidine, lasiocarpine, and heliotrine. The extraction parameters, such as extraction time, extraction temperature, shaking speed, elution solvent and elution time, were optimized. Then ultra high performance liquid chromatography with mass spectrometry coupled with molecularly imprinted polymer‐solid‐phase microextraction method was developed for the fast and efficient analysis of four pyrrolizidine alkaloids from the model herbal plant Farfarae Flos. The established method was validated and exhibited satisfactory accuracy and precision. The present method provides an innovative and fast analytical strategy for the determination of trace toxic pyrrolizidine alkaloids in complicated samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号