首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 875 毫秒
1.
实体肿瘤血管具有扩张、扭曲、不规则分支以及分支间连接絮乱等特征. 为了考察这些特征对血液流动的影响,将肿瘤血管简化为垂直相互贯通的微血管网,借助微流体实验装置,以一定浓度的红细胞悬液作为流动介质,研究红细胞在微血管网中的流动和分布特性. 具体实验方案如下:首先,采用软刻蚀技术,在聚二甲基硅氧烷(polydimethylsiloxane, PDMS)上加工出微血管网;然后,采用微注射泵控制微血管网入口处的红细胞悬液流量,使用倒置显微镜和高速摄影系统观察并记录实验过程;最后,通过Matlab 软件包Piv-lab 及高速摄影配套软件对获得的视频图像进行处理,提取红细胞在微血管网中的流动和分布数据. 数据处理结果显示,红细胞在微血管网中的流动和分布特性受悬液内的红细胞压积(hematocit, Hct)的影响. 红细胞随悬液Hct 的不同呈现2 种运动轨迹:一种为仅沿着轴向微管道流动;另一种是从轴向微管道流入并穿过径向微管道,再进入另一侧的轴向微管道. 另外,入口流量相同时,红细胞在微血管网中的流动速度随Hct 变化呈现不同,Hct 为3% 和5% 的红细胞速度要明显高于Hct 为1% 的红细胞速度.  相似文献   

2.
表面粗糙度对微细管内气体流动特性的影响   总被引:2,自引:0,他引:2  
采用了表面粗糙度粘性系数模型对微细管内的气体流动进行数值模拟,以研究微管内壁表面粗糙度对微管内气体流动的影响。运用本文改进的表面粗糙度粘性系数模型,数值模拟与实验数据十分吻合。计算结果表明,进出口压力一定时,表面粗糙度对流场的压力、密度及温度分布的影响不大,但是对速度场的影响十分显著,表面粗糙度使气体流动速度减小,并使壁面附近的速度梯度减小,从而使通过管道的气体质量流量减小,在微管内的气体流动中,表面粗糙度的影响是不能被忽略的。  相似文献   

3.
李舰  张劲柏  李椿萱 《力学学报》2009,41(3):289-299
应用参数摄动法对可压缩N-S方程进行渐近展开,并取其零阶近似对高压下微管道液体流动特性进行了分析.对任意截面形状和面积的微管道,在等温流动假设下将其截面形状、滑移长度等对解的贡献转化为求解该截面的格林函数,并给出等截面圆形微管道流动的零阶近似解.以此分析可压缩性、黏性以及壁面滑移等因素对高压下液体微管道流动特性的影响,进一步揭示了高压驱动下液体微管道流动偏离经典Hagen-Poiseuille(HP)理论的原因.   相似文献   

4.
汶川大地震后水坝建设中若干问题的思考   总被引:1,自引:0,他引:1  
陈德基 《力学学报》2009,17(3):289-295
应用参数摄动法对可压缩N-S方程进行渐近展开,并取其零阶近似对高压下微管道液体流动 特性进行了分析.对任意截面形状和面积的微管道,在等温流动假设下将其截面形状、滑移 长度等对解的贡献转化为求解该截面的格林函数,并给出等截面圆形微管道流动的零阶近似 解.以此分析可压缩性、黏性以及壁面滑移等因素对高压下液体微管道流动特性的影响,进 一步揭示了高压驱动下液体微管道流动偏离经典Hagen-Poiseuille(HP)理论的原因.  相似文献   

5.
焦哲  符松 《计算力学学报》2016,33(4):588-593
重点研究高速离心压气机叶轮与机匣间的间隙流动及其温度分布。研究将离心压气机简化为高速转动圆盘,搭建了相关实验平台,并开展了相应的数值模拟研究。通过改变转动圆盘的转速和轴向进入的冷却流的流量,研究了转速和流量对于间隙内温度和速度分布的影响。结果显示,转速是影响温度变化的最主要因素,转速越大,温度越高;同等幅度的流量变化对温度的影响则较小。研究发现,在实验和模拟对应的大雷诺数条件下,无量纲的速度分布基本不受到圆盘转速、冷却流量和温度场的影响。  相似文献   

6.
考虑黏性流体在微管道内作层流运动,给出了黏性流体在微圆管中的速度分布方程。利用修正偶应力理论和Euler梁模型建立细长微管模型,根据虚功原理推导输流微管流-固耦合振动方程,应用微分变换法计算微管道系统的固有频率。通过与有限差分法求解结果对比,证明微分变换法具有较高的精度。随后,研究了流体黏性、微管材料内禀特征尺寸和预应力对固有频率的影响。最后,分析了流体临界流速与预应力的关系。数值结果表明:在流体平均速度相同的条件下,考虑流体黏性时微管各阶固有频率偏低,并且平均速度越大,这一趋势越明显。  相似文献   

7.
旋转流场中的流体流动比较复杂,特别是在高转速、微尺度工况时,流场中的流体流态及其判断方法缺乏完备的理论模型. 选择干气密封作为高速旋转流场的研究对象,以开启力和泄漏量作为宏观特性表征指标参数,选择剪切(周向)、径向及轴向速度分量对速度流场进行介观表述,通过Fluent软件仿真计算大跨距转速(低转速至超高转速)时的宏观、介观指标参数,研究密封性能指标参数与速度场间的内在逻辑关系. 结果表明:低速旋转流场中的轴向速度分量较小,可忽略不计,转速升高会促使轴向速度分量持续增大,当转速持续增大并超过某一临界值时,轴向速度分量会出现迅速升高的情形;轴向速度分量的变化情形与微尺度流场(开启力和泄漏量)波动密切相关,是影响旋转流场流态的关键性指标参数,也是引起宏观流场特性变化的主要因素;径向速度分量的变化情形与微尺度流场泄漏量的变化规律基本一致,随着转速的增大,泄漏量的宏观性能反馈要早于开启力波动的出现. 基于以上研究,同时根据管道雷诺数、流量因子判定模型及流体力学基本理论,尝试提出了基于三维速度分量的针对旋转流场流态的椭球判定模型.   相似文献   

8.
微管中非混溶两种流体运动界面的特征   总被引:1,自引:0,他引:1  
以平流泵为压力源,在不同管径的石英微管中进行流动试验,显微镜观察和拍摄水-气界面和油-水界面,在微米尺度下进行了不同流速的运动界面实验,研究了微管中非混溶两种流体运动界面的特征,以及润湿性对流体在微管中流动界面的影响.实验中观察到了润湿界面的滞后现象,即界面随流速的不同而改变的现象.实验结果表明:水在微管中流动的气液界面随着流速的不同形状发生改变,流速较小时,界面基本保持为凹液面;随着流速的增加,液面由凹液面向平液面发展,进而发展为凸液面.在表面张力的作用下,微管的尺寸越小,两种流体的性质差别越大,界面的润湿滞后现象越不明显,讨论了界面和润湿滞后存在的问题和可能的应用.  相似文献   

9.
《力学学报》2012,44(1)
严重段塞流是海洋工程气液混输管线-立管系统中常见的一种特殊有害流动现象,采用水平-下倾-悬链线立管气液混输组合管道系统,通过系列实验在悬链线立管中获得了严重段塞流、间歇流和震荡流等流型,阐述了这些流动现象的形成机理,提出了能够产生严重段塞流的判定准则.结果表明,悬链线立管严重段塞流具有明显周期性,在一个周期内的流动特征可分为液塞形成、液体出流、液气喷发及液体回流等4个阶段,进而给出了各阶段中相关流动参数的变化规律.在实验中同时还对悬链线与垂直立管中严重段塞流形成机理进行了比较分析,发现两者在液塞形成阶段有显著差别.其中,在悬链线立管中液塞形成之前首先需要经历一个气液混合液塞形成过程,而垂直立管则没有这个过程.  相似文献   

10.
纳米尺度下气体驱动液体流动特征在纳流控芯片及页岩气开发中具有广泛的应用前景. 利用管径规格为292.8 nm,206.2 nm,89.2 nm,67.0 nm,26.1 nm的氧化铝膜为纳米阵列,进行气驱水实验和单相气体流动实验,分析纳米尺度下气驱水流动特征. 实验表明,纳米阵列中气驱水时气体流量随驱动压力变化经历三个阶段:第一阶段流量缓慢增大,且比单相气体流量降低约一个数量级;第二阶段纳米阵列中的水被大量驱替出,流量迅速增大;第三阶段纳米阵列中的水全部被驱替出,流动特征与单相气体流动保持一致. 分析表明,气驱水第一阶段存在气液界面毛细管力的“钉扎”作用及固液界面相互作用力的影响,是产生非线性流动的主要原因;而一旦“钉扎”作用破坏,气体进入管道推动界面运动,气柱与液柱之间的毛细曲面曲率变化,毛细管力减小,气体流量急剧增大,其中毛细管力随驱替压力增大急剧变化,是造成第二阶段气体流量突变的主要原因.   相似文献   

11.
To model red blood cell (RBC) deformation and multiple‐cell interactions in flow, the recently developed technique derived from the lattice Boltzmann method and the distributed Lagrange multiplier/fictitious domain method is extended to employ the mesoscopic network model for simulations of RBCs in flow. The flow is simulated by the lattice Boltzmann method with an external force, while the network model is used for modeling RBC deformation. The fluid–RBC interactions are enforced by the Lagrange multiplier. To validate parameters of the RBC network model, stretching tests on both coarse and fine meshes are performed and compared with the corresponding experimental data. Furthermore, RBC deformation in pipe and shear flows is simulated, revealing the capacity of the current method for modeling RBC deformation in various flows. Moreover, hydrodynamic interactions between two RBCs are studied in pipe flow. Numerical results illustrate that the leading cell always has a larger flow velocity and deformation, while the following cells move slower and deform less.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Numerical simulations are performed to examine the packing behavior of human red blood cells(RBCs). A combined ?nite-discrete element method(FDEM) is utilized, in which the RBCs are modeled as no-friction and no-adhesion solid bodies. The packed volume and the void ratio of a large number of randomly packed RBCs are clari?ed,and the effects of the RBC shape, the mesh size, the cell number, and the container size are investigated. The results show that the packed human RBCs with normal shape have a void ratio of 28.45%, which is slightly higher than that of the ?at or thick cells used in this study. Such information is bene?cial to the further understanding on the geometric features of human RBCs and the research on RBC simulations.  相似文献   

13.
The implementation of a spectrin‐link (SL) red blood cell (RBC) membrane method coupled with a lattice‐Boltzmann (LB) fluid solver is discussed. Details of the methodology are included along with subtleties associated with its integration into a massively parallel hybrid LB finite element (FE) suspension flow solver. A comparison of the computational performance of the coupled LB–SL method with that of the previously implemented LB–FE is given for an isolated RBC and for a dense suspension in Hagen–Poiseuille flow. Validating results for RBCs isolated in shear and parachuting in microvessel flow are also presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Hemodynamic stresses are involved in the development and progression of vascular diseases. This study investigates the influence of mechanical factors on the hemodynamics of the curved coronary artery in an attempt to identify critical factors of non‐Newtonian models. Multiphase non‐Newtonian fluid simulations of pulsatile flow were performed and compared with the standard Newtonian fluid models. Different inlet hematocrit levels were used with the simulations to analyze the relationship that hematocrit levels have with red blood cell (RBC) viscosity, shear stress, velocity, and secondary flow. Our results demonstrated that high hematocrit levels induce secondary flow on the inside curvature of the vessel. In addition, RBC viscosity and wall shear stress (WSS) vary as a function of hematocrit level. Low WSS was found to be associated with areas of high hematocrit. These results describe how RBCs interact with the curvature of artery walls. It is concluded that although all models have a good approximation in blood behavior, the multiphase non‐Newtonian viscosity model is optimal to demonstrate effects of changes in hematocrit. They provide a better stimulation of realistic blood flow analysis. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A sensor that can efficiently and sequentially measure the deformability of individual red blood cell (RBC) flowing along a microchannel is described. Counter-electrode-type microsensors are attached to the channel bottom wall, and as RBCs pass between the electrodes, the time series of the electric resistance is measured. An RBC is deformed by the high shear flow to a degree dependent upon its elastic modulus. Hence, the profile of the resistance, which is unique to the shape of the RBC, can be analyzed to obtain the deformability of each cell. First, theoretical and experimental analyses were conducted to identify the specific AC frequency at which the effect of the electric double layer formed on the electrode surface is minimized. Measurements were then conducted upon samples of normal human RBCs and glutaraldehyde-treated (rigidified) RBCs to evaluate the feasibility of the present method. In addition, simultaneous visualization of RBC deformation was performed using a high-speed camera. Normal RBCs were observed to have a degree of deformation index (DI) of around 0.57, whereas the rigidified RBCs was DI = 0 in the microchannel. The experimental measurements showed a strong correlation between the half-width of the maximum of the resistance distribution and the DI of the RBC.  相似文献   

16.
The changes of blood perfusion and oxygen transport in tumors during tumor vascular normalization are studied with 3-dimensional mathematical modeling and numerical simulation. The models of tumor angiogenesis and vascular-disrupting are used to simulate "un-normalized" and "normalized" vasculatures. A new model combining tumor hemodynamics and oxygen transport is developed. In this model, the intravasculartransvascular-interstitial flow with red blood cell(RBC) delivery is tightly coupled, and the oxygen resource is produced by heterogeneous distribution of hematocrit from the flow simulation. The results show that both tumor blood perfusion and hematocrit in the vessels increase, and the hypoxia microenvironment in the tumor center is greatly improved during vascular normalization. The total oxygen content inside the tumor tissue increases by about 67%, 51%, and 95% for the three approaches of vascular normalization,respectively. The elevation of oxygen concentration in tumors can improve its metabolic environment, and consequently reduce malignancy of tumor cells. It can also enhance radiation and chemotherapeutics to tumors.  相似文献   

17.
Microvasculature plays a decisive role on the normal operation of the human body. Previous studies have shown that the causes of microvascular hemolytic anemia and other diseases are closely related to the interaction between micro-thrombi and RBCs. The movement and deformation of Red Blood Cells (RBCs) in microvasculature with hemicyclic micro-thrombi of different sizes on the wall are simulated based on the Moving Particle Semi-implicit method (MPS) and the spring network model of RBCs membrane. Simulation of a single RBC passing the straight blood vessel indicates the strong squeeze of the RBC caused by the thrombus, which leads to a 38.5% increasing of the RBC velocity and a greater deformation, and such squeeze effect is positively related with the size of the thrombus. When two RBCs pass through the straight blood vessel with two thrombi on the both sidewalls, the deformation of the RBCs first increases and then decreases. Results show that when the axial position between the two thrombi is 10 × d0 different, the deformation of RBCs reaches the maximum of 3.10 (upper) and 2.79 (lower), respectively. When two side-by-side RBCs pass through a bifurcated blood vessel with a sidewall thrombus, the velocity and deformation of RBCs are greatly affected by the thrombus. When the thrombus radius changes from 0 × d0 to 20 × d0, the peak velocities of the two cells increase by 51.6% (upper) and 67.9% (lower), respectively.  相似文献   

18.
A spring model is applied to simulate the skeleton structure of the red blood cell (RBC) membrane and to study the RBC rheology in two‐dimensional Poiseuille flows using an immersed boundary method. The lateral migration properties of the cells in Poiseuille flows have been investigated. The simulation results show that the rate of migration toward the center of the channel depends on the swelling ratio and the deformability of the cells. We have also combined the above methodology with a fictitious domain method to study the motion of RBCs in a two‐dimensional micro‐channel with a constriction with an application to blood plasma separation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
肿瘤血管生成(Tumor-induced Angiogenesis)是指在实体肿瘤细胞诱导下毛细血管的生长以及肿瘤中血液微循环的建立。肿瘤内血液、组织液等流体流动在肿瘤药物输运过程中扮演着重要作用,而这些流动受到肿瘤内微血管网络结构的直接影响。目前要获得精确的肿瘤内外的毛细血管拓扑结构存在一定困难,因此给肿瘤内的血液动力学研究带来困难。本文根据肿瘤内外的复杂生理特性,建立肿瘤内外血管生成的二维离散模型,在获得相对真实的毛细血管网络拓扑结构基础上对肿瘤内的血液动力学进行初步计算,数值计算的结果加深了对肿瘤的复杂生理特性的理解,同时也给肿瘤内的药物输运给予一定的提示。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号