首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
毛细管区带电泳中蛋白质吸附及其解决方法   总被引:1,自引:0,他引:1  
宋立国  欧庆瑜 《分析化学》1994,22(3):315-321
本文评述毛细管区带电脉中蛋白质的吸附及解决办法,内容包括吸附的原因,通过缓冲溶液组成的变化、通过毛细管内壁改性、通过附加电场等方法降低吸附。对毛细管内壁电荷密度等方法降低吸附。尤其对毛细管内壁改性方法,改性对电渗流及分离效率的影响,改性的稳定性和重复性等进行了较为详细的阐述。  相似文献   

2.
本文评述毛细管区带电泳中蛋白质的吸附及解决办法,内容包括吸附的原因,通过缓冲溶液组成的变化、通过毛细管内壁改性、通过附加电场等方法降低吸附。对毛细管内壁电荷密度等方法降低吸附。尤其对毛细管内壁改性方法,改性对电渗流及分离效率的影响,改性的稳定性和重复性等进行了较为详细的阐述。  相似文献   

3.
本文报道了毛细管电泳聚乙烯吡咯烷酮与羟乙基纤维素混配无胶筛分介质分离较短的 p GEM7Zf(+) Hae DNA片段 (DNA长度为 1 8~ 675bp)。研究表明 ,在 1 %的羟乙基纤维素无胶筛分介质中 ,加入 2 %的聚乙烯吡咯烷酮能显著提高 DNA片段的分辨率和分离效率。在混配无胶筛分介质中 ,聚乙烯吡咯烷酮有两种作用 ,一是动态涂渍 ,降低毛细管内壁对 DNA片段与 DNA荧光插入试剂的吸附 ,改善分离效率 ;二是两种不同长度、性质的线性高分子能形成更为致密的“缠绕网络”,有利于较短的 DNA片段电泳分离。  相似文献   

4.
毛细管电泳具有分析时间短,分离效率高,样品消耗量少等优点,在生物样品分离,特别是蛋白质分析领域有重要应用。然而,毛细管内壁硅羟基的解离给分离结果带来诸多不良影响。聚合物涂层能够抑制蛋白质在毛细管内壁的吸附以及调控电渗流,故对毛细管内壁进行有效修饰能够提高其对蛋白质的分离效率及分离稳定性。该文主要综述了动态及静态聚合物涂层毛细管的最新研究进展,并概述了近些年基于多巴胺/聚多巴胺发展起来的涂层毛细管的研究进展,最后展望了聚合物涂层毛细管的发展趋势。  相似文献   

5.
陈光伟  吕翔 《分析化学》1998,26(1):59-63
用石英玻璃微珠模拟了HP-1,HP-20M,HP-17毛细管色谱柱内壁,用真空重量法测定了丙烷、丁烷、丙烯、液化石油气样品在3种模拟毛细管内壁表面的吸附等温线,并计算了等量吸附热随吸附量的变化关系。结果表明改性石英玻璃表面固定相的化学性质是吸附等温线类型的决定因素。本文所得结果对毛细管色谱动力学过程的理解,样品在毛细管柱上的活度系数及液化石油气组成准确测定等方面有重要意义。  相似文献   

6.
本文以N,N'-羰基二咪唑作为连接臂,将两性电解质(CAs)与毛细管内壁进行偶联.在电场作用下,CAs在毛细管内按照等电点次序依次分开,再通过与羰基二咪唑的化学键合,形成固定化pH梯度.该方法操作简单,适用于两步法毛细管等电聚焦分离蛋白质等两性生物大分子.考察了对血红蛋白、牛血清白蛋白及胃蛋白酶三种蛋白质混合样品的分离,证明该方法可行.  相似文献   

7.
采用全新的两步原位合成法,先通过将带有双活性反应基团γ—三甲氧基硅丙基异丁烯酸酯的CH3-O-Si-基团与石英毛细管内壁表面的Si-0H反应,在石英毛细管内壁键合上带有活性基团的中间有机层,再原位合成多孔聚合物,制成高效一体化Q型聚合物颗粒多孔层开管柱(PLOT)Pora-Q毛细管色谱柱;该色谱柱具有良好的惰性、较强的分离能力;与一般的商品化PLOT-Q色谱柱相比,热稳定性和机械强度有明显的改善和提高,最高使用温度提高了50℃达到300℃,扩展了该种色谱柱的应用范围。  相似文献   

8.
本工作比较系统地研究了毛细管内壁涂层表面积的测定方法。  相似文献   

9.
将合成的胆甾酯侧链聚硅氧烷高分子液昌化合物涂渍在弹性石英毛细管内壁上,制备毛细管气相色谱固定相,该固定相具有较高的柱效,较好的热稳定性和分离选择性,对蒽,菲,芴及苊混合物和二氯苯异构体混合物具有良好的分离效果。  相似文献   

10.
用一步法和准一步法合成了以三羟甲基丙烷为核的两个系列的超支化聚酯,利用红外光谱、羟值测定等手段对其分子结构进行了表征。利用超支化聚合物低粘度的特点,采用化学键合的方法将其涂于石英毛细管电泳柱内壁,使其在毛细管内壁上形成稳定的超支化聚酯涂层。该涂层在pH 3.0~7.0范围内能够有效地抑制电渗流和碱性蛋白质在毛细管壁上的吸附。实验结果表明:该涂层柱在pH 5.0的磷酸缓冲溶液中,对碱性蛋白质的分离柱效可高达塔板数106/m。每次运行之间(n=6),天与天之间(n=3),以及柱与柱之间(N=3)的迁移时间的标准偏差(RSD%)在0.5%~1.5%之间,表明本方法制得的涂层柱具有良好的稳定性。  相似文献   

11.
Song L  Liang D  Fang D  Chu B 《Electrophoresis》2001,22(10):1987-1996
Poly(N,N-dimethylacrylamide) (PDMA) with a molecular mass of 5.2 x 10(6) g/mol has been synthesized and used in DNA sequencing analysis by capillary electrophoresis (CE). A systematic investigation is presented on the effects of different separation conditions, such as injection amount, capillary inner diameter, polymer concentration, effective separation length, electric field and temperature, on the resolution. DNA sequencing up to 800 bases with a resolution (R) limit of 0.5 (and 1,000 bases with a resolution limit of 0.3) and a migration time of 96 min was achieved by using 2.5% w/v polymer, 150 V/cm separation electric field, and 60 cm effective separation length at room temperature on a DNA sample prepared with FAM-labeled--21M13 forward primer on pGEM3Zf(+) and terminated with ddCTP. Ultrafast and fast DNA sequencing up to 420 and 590 bases (R > or = 0.5) were also achieved by using 3% w/v polymer and 40 cm effective separation length with a separation electric field of 525 and 300 V/cm, and a migration time of 12.5 and 31.5 min, respectively. PDMA has low viscosity, long shelf life and dynamic coating ability to the glass surface. The unique properties of PDMA make it a very good candidate as a separation medium for large-scale DNA sequencing by capillary array electrophoresis (CAE).  相似文献   

12.
Gao F  Tie C  Zhang XX  Niu Z  He X  Ma Y 《Journal of chromatography. A》2011,1218(20):3037-3041
The separation and sequencing of DNA are the main objectives of the Human Genome Project, and this project has also been very useful for gene analysis and disease diagnosis. Capillary electrophoresis (CE) is one of the most common techniques for the separation and analysis of DNA. DNA separations are usually achieved using capillary gel electrophoresis (CGE) mode, in which polymer gel is packed into the capillary. Compared with a traditional CGE matrix, a hydrophilic polymer matrix, which can be adsorb by the capillary wall has numerous advantages, including stability, reproducibility and ease of automation. Various water-soluble additives, such as linear poly(acrylamide) (PAA) and poly(N,N-dimethylacrylamide) (PDMA), have been employed as media. In this study, different star-shaped PDMA polymers were designed and synthesized to achieve lower polymer solution viscosity. DNA separations with these polymers avoid the disadvantages of high viscosity and long separation time while maintaining high resolution (10 bp between 271 bp and 281 bp). The influences of the polymer concentration and structure on DNA separation were also determined in this study; higher polymer concentration yielded better separation performance, and star-like polymers were superior to linear polymers. This work indicates that modification of the polymer structure is a potential strategy for optimizing DNA separation.  相似文献   

13.
Liang D  Song L  Chen Z  Chu B 《Electrophoresis》2001,22(10):1997-2003
The effect of the separation medium in capillary electrophoresis consisting of a low-molecular-mass poly(N,N-dimethylacrylamide) (PDMA) solution on the DNA separation by adding a small amount of montmorillonite clay into the polymer matrix is presented. On the separation of the pBR322/HaeIII digest, both the resolution and the efficiency were increased by adding 2.5-5.0 x 10(-5) g/mL clay into the 5% w/v PDMA with a molecular mass of only 100 K. Moreover, there was no increase in the migration time of DNA fragments. Similar results were observed by using a C-terminated pGEM-3Zf(+) sequencing DNA sample in a sequencing buffer. Experimental data also showed that the addition of clay increased the viscosity of the polymer solution. We attribute this effect to the structural change of the polymer matrix caused by the exfoliated clay sheets, whereby the thin clay sheets function like a "dynamic cross-linking plate" for the PDMA chains and effectively increase the apparent molecular mass of PDMA.  相似文献   

14.
The mixtures of two polymers, poly (N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP) were synthesized and used as the separation medium for double-stranded and single-stranded DNA fragments by capillary electrophoresis with UV detector. On optimal conditions, 2%w/v PDMA 2%w/v PVP can be used to separate the doublet 123/124bp in pBR322/Hae Ⅲ Markers.  相似文献   

15.
Liang D  Chu B 《Electrophoresis》2002,23(16):2602-2609
Effects of concentration gradient on double-stranded DNA (dsDNA) separation by capillary electrophoresis are presented. By using a concentration gradient in the range between 0.8% and 3.2% for poly(N,N-dimethylacrylamide) (PDMA), the presence of a mesh-size gradient in the capillary could enhance the separation of larger size DNA fragments, better than that based on a single uniform concentration over the same capillary length. A decrease in the column length could make the gradient effect more obvious. An optimal capillary length could be achieved by using a judicious combination of the concentration gradient and the concentration range, yielding a maximum resolution for the system. The standard deviation of the migration time measured for each DNA fragment was less than 5% in ten continuous runs, suggesting that the gradient formed inside the column was quite stable.  相似文献   

16.
The possibility of using polymer mixtures with different chemical compositions as a DNA sequencing matrix by capillary electrophoresis (CE) has been exploited. Polyacrylamide (PAM, 2.5%, w/v) having a molecular mass of 2.2 x 10(6) has been mixed with poly(N,N-dimethylacrylamide) (PDMA) having molecular masses of 8000, 470000 and 2.1 x 10(6) at concentrations of 0.2, 0.5 and 1% (w/v). Unlike polymer mixtures of the same polymer with different molecular masses, the use of polymer mixtures with different chemical compositions encounters an incompatibility problem. It was found that the incompatibility increased with increasing PDMA molecular mass and PDMA concentration, which resulted in decreased efficiency in DNA sequencing. Also, the incompatibility had a more pronounced effect on the efficiency as the base number was increased. However, by choosing a low-molecular-mass PDMA of 8000 and a low concentration of 0.2% (w/v), the incompatibility of PAM and PDMA has been alleviated. At the same time, the advantage of using polymer mixtures revealed a higher efficiency for such a polymer mixture when compared with PAM. The mixture also endowed the separation medium with a dynamic coating ability. An efficiency of over 10 x 10(6) theoretical plates per meter has been achieved by using the bare capillaries without the additional chemical coating step.  相似文献   

17.
A series of well‐defined triblock copolymers, poly(N, N‐dimethylacrylamide)‐block‐poly(ethylene oxide)‐block‐poly(N, N‐dimethylacrylamide) (PDMA‐b‐PEO‐b‐PDMA) synthesized by atom transfer radical polymerization, were used as physical coatings for protein separation. A comparative study of EOF showed that the triblock copolymer presented good capillary coating ability and EOF efficient suppression. The effects of the Mr of PDMA block in PDMA‐b‐PEO‐b‐PDMA triblock copolymer and buffer pH on the separation of basic protein for CE were investigated. Moreover, the influence of the copolymer structure on separation of basic protein was studied by comparing the performance of PDMA‐b‐PEO‐b‐PDMA triblock copolymer with PEO‐b‐PDMA diblock copolymer. Furthermore, the triblock copolymer coating showed higher separation efficiency and better migration time repeatability than fused‐silica capillary when used in protein mixture separation and milk powder samples separation, respectively. The results demonstrated that the triblock copolymer coatings would have a wide application in the field of protein separation.  相似文献   

18.
The novel polymer matrices reported here are low-viscosity sieving media for DNA capillary electrophoresis. This new family of matrices comprises copolymers of N,N-dimethylacrylamide with different monomers which increase polymer hydrophilicity. All these new copolymers self-coat on fused-silica capillaries. Resolution, peak spacing and peak width were the parameters taken into account to assess the influence of polymer structure on separation selectivity and efficiency. This work demonstrates that the performance of polydimethylacrylamide (PDMA) can be improved through copolymerization with hydrophilic monomers. The improvement is related to the efficiency parameter. The new copolymers, due to their low viscosity high sieving capacity and ability to suppress EOF, represent a better alternative to PDMA and are suitable replaceable matrices for capillary and microchip electrophoresis.  相似文献   

19.
Wang Y  Liang D  Hao J  Fang D  Chu B 《Electrophoresis》2002,23(10):1460-1466
A noncross-linked interpenetrating polymer network (IPN), consisting of poly(N,N-dimethylacrylamide) (PDMA) and polyvinylpyrrolidone (PVP, weight-average molecular weight M(w) = 1 x 10(6) g/mol) was synthesized by polymerizing N,N-dimethylacrylamide (DMA) monomers directly in PVP buffer solution and tested as a separation medium for double-stranded (ds)DNA analysis without further purification. Due to the incompatibility of PVP and PDMA, a simple solution mixture could incur a microphase separation and showed poor performance on dsDNA separation. However, a dramatic improvement was achieved by the formation of an IPN. We attributed the high sieving ability of IPN as due to an increase in the number of entanglements by the more extended polymer chains. Apparent viscosity studies showed that the IPN had a much higher viscosity than the simple mixture containing the same amount of PDMA and PVP. In 1 x Tris-borate-EDTA (TBE) buffer, the concentration ratio of PDMA and PVP had a great effect on the DNA separation. At optimal conditions, the 22 fragments in pBR322/HaeIII DNA were successfully separated within 15 min, with a resolution of better than 1.0 for 123/124 bp.  相似文献   

20.
Copolymers of acrylamide (AM) and N,N-dimethylacrylamide (DMA) with AM to DMA molar ratios of 3:1, 2:1 and 1:1 and molecular weights of about 2.2 MDa were synthesized. The polymers were tested as separation media in DNA sequencing analysis by capillary electrophoresis (CE). The dynamic coating ability of polydimethylacrylamide (PDMA) and the hydrophilicity of polyacrylamide (PAM) have been successfully combined in these random copolymers. A separation efficiency of over 10 million theoretical plates per meter has been reached by using the bare capillaries without the additional polymer coating step. Under optimized separation conditions for longer read length DNA sequencing, the separation ability of the copolymers decreased with decreasing AM to DMA molar ratio from 3:1, 2:1 and 1:1. In comparison with PAM, the copolymer with a 3:1 AM:DMA ratio showed a higher separation efficiency. By using a 2.5% w/v copolymer with 3:1 AM:DMA ratio, one base resolution of 0.55 up to 699 bases and 0.30 up to 963 bases have been achieved in about 80 min at ambient temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号