首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
An open queueing network model in heavy traffic is developed. Such models are mathematical models of computer networks in heavy traffic. Laws of the iterated logarithm for the virtual waiting time of the customer in open queueing networks and homogeneous computer networks are proved.  相似文献   

2.
The modern queueing theory is a powerful tool for a quantitative and qualitative analysis of communication systems, computer networks, transportation systems, and many other technical systems. The paper is designated to the analysis of queueing systems arising in the network theory and communications theory (such as the so-called multiphase queueing systems, tandem queues, or series of queueing systems). We present heavy traffic limit theorems for the full idle time in multiphase queueing systems. We prove functional limit theorems for values of the full idle time of a queueing system, which is its important probability characteristic. __________ Translated from Lietuvos Matematikos Rinkinys, Vol. 45, No. 3, pp. 367–386, July–September, 2005.  相似文献   

3.
The paper is devoted to the analysis of queueing systems in the context of the network and communication theory. We investigate a theorem on the law of the iterated logarithm for a queue of jobs in a multiserver open queueing network under heavy traffic conditions.  相似文献   

4.
This paper is concerned with Brownian system models that arise as heavy traffic approximations for open queueing networks. The focus is on model formulation, and more specifically, on the formulation of Brownian models for networks with complex routing. We survey the current state of knowledge in this dynamic area of research, including important open problems. Brownian approximations culminate in estimates of complete distributions; we present numerical examples for which complete sojourn time distributions are estimated, and those estimates are compared against simulation.  相似文献   

5.
戴万阳 《应用数学和力学》2007,28(10):1185-1196
证明一个满负荷交通极限定理以证实在抢占型优先服务机制下多类排队网络的扩散逼近,进而为该系统提供有效的随机动力学模型.所研究的排队网络典型地出现在现代通讯系统中高速集成服务分组数据网络,其中包含分组数据包的若干交通类型,每个类型涉及若干工作处理类(步骤),并且属于同一交通类型的工作在可能接受服务的每一个网站被赋予相同的优先权等级,更进一步地,在整个网络中,属于不同交通类型的分组数据包之间无交互路由.  相似文献   

6.
This paper presents heavy traffic limit theorems for the extreme virtual waiting time of a customer in an open queueing network. In this paper, functional limit theorems are proved for extreme values of important probability characteristics of the open queueing network investigated as the maximum and minimum of the total virtual waiting time of a customer, and the maximum and minimum of the virtual waiting time of a customer. Also, the paper presents the previous related works for extreme values in queues and the virtual waiting time in heavy traffic.  相似文献   

7.
Williams  R.J. 《Queueing Systems》1998,30(1-2):27-88
Certain diffusion processes known as semimartingale reflecting Brownian motions (SRBMs) have been shown to approximate many single class and some multiclass open queueing networks under conditions of heavy traffic. While it is known that not all multiclass networks with feedback can be approximated in heavy traffic by SRBMs, one of the outstanding challenges in contemporary research on queueing networks is to identify broad categories of networks that can be so approximated and to prove a heavy traffic limit theorem justifying the approximation. In this paper, general sufficient conditions are given under which a heavy traffic limit theorem holds for open multiclass queueing networks with head-of-the-line (HL) service disciplines, which, in particular, require that service within each class is on a first-in-first-out (FIFO) basis. The two main conditions that need to be verified are that (a) the reflection matrix for the SRBM is well defined and completely- S, and (b) a form of state space collapse holds. A result of Dai and Harrison shows that condition (a) holds for FIFO networks of Kelly type and their proof is extended here to cover networks with the HLPPS (head-of-the-line proportional processor sharing) service discipline. In a companion work, Bramson shows that a multiplicative form of state space collapse holds for these two families of networks. These results, when combined with the main theorem of this paper, yield new heavy traffic limit theorems for FIFO networks of Kelly type and networks with the HLPPS service discipline. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
We present an introductory review of recent work on the control of open queueing networks. We assume that customers of different types arrive at a network and pass through the system via one of several possible routes; the set of routes available to a customer depends on its type. A route through the network is an ordered set of service stations: a customer queues for service at each station on its route and then leaves the system. The two methods of control we consider are the routing of customers through the network, and the sequencing of service at the stations, and our aim is to minimize the number of customers in the system. We concentrate especially on the insights which can be obtained from heavy traffic analysis, and in particular from Harrison's Brownian network models. Our main conclusion is that in many respects dynamic routingsimplifies the behaviour of networks, and that under good control policies it may well be possible to model the aggregate behaviour of a network quite straightforwardly.Supported by SERC grant GR/F 94194.  相似文献   

9.
Williams  R.J. 《Queueing Systems》1998,30(1-2):5-25
Semimartingale reflecting Brownian motions in an orthant (SRBMs) are of interest in applied probability because of their role as heavy traffic approximations for open queueing networks. It is shown in this paper that a process which satisfies the definition of an SRBM, except that small random perturbations in the defining conditions are allowed, is close in distribution to an SRBM. This perturbation result is called an invariance principle by analogy with the invariance principle of Stroock and Varadhan for diffusions with boundary conditions. A crucial ingredient in the proof of this result is an oscillation inequality for solutions of a perturbed Skorokhod problem. In a subsequent paper, the invariance principle is used to give general conditions under which a heavy traffic limit theorem holds for open multiclass queueing networks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Priority queueing models have been commonly used in telecommunication systems. The development of analytically tractable models to determine their performance is vitally important. The discrete time batch Markovian arrival process (DBMAP) has been widely used to model the source behavior of data traffic, while phase-type (PH) distribution has been extensively applied to model the service time. This paper focuses on the computation of the DBMAP/PH/1 queueing system with priorities, in which the arrival process is considered to be a DBMAP with two priority levels and the service time obeys a discrete PH distribution. Such a queueing model has potential in performance evaluation of computer networks such as video transmission over wireless networks and priority scheduling in ATM or TDMA networks. Based on matrix-analytic methods, we develop computation algorithms for obtaining the stationary distribution of the system numbers and further deriving the key performance indices of the DBMAP/PH/1 priority queue. AMS subject classifications: 60K25 · 90B22 · 68M20 The work was supported in part by grants from RGC under the contracts HKUST6104/04E, HKUST6275/04E and HKUST6165/05E, a grant from NSFC/RGC under the contract N_HKUST605/02, a grant from NSF China under the contract 60429202.  相似文献   

11.
Multiphase queueing systems (MQS) (tandem queues, queues in series) are of special interest both in theory and in practical applications (packet switch structures, cellular mobile networks, message switching systems, retransmission of video images, asembly lines, etc.). In this paper, we deal with approximations of MQS and present a heavy traffic limit theorems for the sojourn time of a customer in MQS. Functional limit theorems are proved for the customer sojourn time – an important probability characteristic of the queueing system under conditions of heavy traffic.   相似文献   

12.
We consider characterizations of departure functions in Markovian queueing networks with batch movements and state-dependent routing in discrete-time and in continuous-time. For this purpose, the notion of structure-reversibility is introduced, which means that the time-reversed dynamics of a queueing network corresponds with the same type of queueing network. The notion is useful to derive a traffic equation. We also introduce a multi-source model, which means that there are different types of outside sources, to capture a wider range of applications. Characterizations of the departure functions are obtained for any routing mechanism of customers satisfying a recurrent condition. These results give a unified view to queueing network models with linear traffic equations. Furthermore, they enable us to consider new examples as well as show limited usages of this kind of queueing networks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

13.
Bramson  Maury 《Queueing Systems》1998,30(1-2):89-140
Heavy traffic limits for multiclass queueing networks are a topic of continuing interest. Presently, the class of networks for which these limits have been rigorously derived is restricted. An important ingredient in such work is the demonstration of state space collapse. Here, we demonstrate state space collapse for two families of networks, first-in first-out (FIFO) queueing networks of Kelly type and head-of-the-line proportional processor sharing (HLPPS) queueing networks. We then apply our techniques to more general networks. To demonstrate state space collapse for FIFO networks of Kelly type and HLPPS networks, we employ law of large number estimates to show a form of compactness for appropriately scaled solutions. The limits of these solutions are next shown to satisfy fluid model equations corresponding to the above queueing networks. Results from Bramson [4,5] on the asymptotic behavior of these limits then imply state space collapse. The desired heavy traffic limits for FIFO networks of Kelly type and HLPPS networks follow from this and the general criteria set forth in the companion paper Williams [41]. State space collapse and the ensuing heavy traffic limits also hold for more general queueing networks, provided the solutions of their fluid model equations converge. Partial results are given for such networks, which include the static priority disciplines. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
In this paper we consider an open queueing network having multiple classes, priorities, and general service time distributions. In the case where there is a single bottleneck station we conjecture that normalized queue length and sojourn time processes converge, in the heavy traffic limit, to one-dimensional reflected Brownian motion, and present expressions for its drift and variance. The conjecture is motivated by known heavy traffic limit theorems for some special cases of the general model, and some conjectured “Heavy Traffic Principles” derived from them. Using the known stationary distribution of one-dimensional reflected Brownian motion, we present expressions for the heavy traffic limit of stationary queue length and sojourn time distributions and moments. For systems with Markov routing we are able to explicitly calculate the limits.  相似文献   

15.
Bramson  Maury 《Queueing Systems》2001,39(1):79-102
We study multiclass queueing networks with the earliest-due-date, first-served (EDDFS) discipline. For these networks, the service priority of a customer is determined, upon its arrival in the network, by an assigned random due date. First-in-system, first-out queueing networks, where a customer's priority is given by its arrival time in the network, are a special case. Using fluid models, we show that EDDFS queueing networks, without preemption, are stable whenever the traffic intensity satisfies j <1 for each station j.  相似文献   

16.
In this paper, the use of queueing theory for modeling uninterrupted traffic flows is evaluated. Empirical data on speeds and flows are used to evaluate speeds generated by the different queueing models. Using the Theil inequality coefficient as evaluation criterion, the speeds generated by the queueing models are compared to the empirical speeds. Queueing models that best fit the observed speeds are obtained. It appears that traffic flow on a highway during non-congested hours is best described using a M/G/1 queueing model. During the congested hours however, the state dependent queueing GI/G/z models are more realistic. Because the queueing models describe the empirical data well, they can also be used to evaluate potential improvements in existing traffic conditions. Received: April 2005 / Revised version: June 2005 AMS classification: 60K30, 68M20  相似文献   

17.
We study long time asymptotic properties of constrained diffusions that arise in the heavy traffic analysis of multiclass queueing networks. We first consider the classical diffusion model with constant coefficients, namely a semimartingale reflecting Brownian motion (SRBM) in a dd-dimensional positive orthant. Under a natural stability condition on a related deterministic dynamical system [P. Dupuis, R.J. Williams, Lyapunov functions for semimartingale reflecting brownian motions, Annals of Probability 22 (2) (1994) 680–702] showed that an SRBM is ergodic. We strengthen this result by establishing geometric ergodicity for the process. As consequences of geometric ergodicity we obtain finiteness of the moment generating function of the invariant measure in a neighborhood of zero, uniform time estimates for polynomial moments of all orders, and functional central limit results. Similar long time properties are obtained for a broad family of constrained diffusion models with state dependent coefficients under a natural condition on the drift vector field. Such models arise from heavy traffic analysis of queueing networks with state dependent arrival and service rates.  相似文献   

18.
Queueing models can be used to model and analyze the performance of various subsystems in telecommunication networks; for instance, to estimate the packet loss and packet delay in network routers. Since time is usually synchronized, discrete-time models come natural. We start this paper with a review of suitable discrete-time queueing models for communication systems. We pay special attention to two important characteristics of communication systems. First, traffic usually arrives in bursts, making the classic modeling of the arrival streams by Poisson processes inadequate and requiring the use of more advanced correlated arrival models. Second, different applications have different quality-of-service requirements (packet loss, packet delay, jitter, etc.). Consequently, the common first-come-first-served (FCFS) scheduling is not satisfactory and more elaborate scheduling disciplines are required. Both properties make common memoryless queueing models (M/M/1-type models) inadequate. After the review, we therefore concentrate on a discrete-time queueing analysis with two traffic classes, heterogeneous train arrivals and a priority scheduling discipline, as an example analysis where both time correlation and heterogeneity in the arrival process as well as non-FCFS scheduling are taken into account. Focus is on delay performance measures, such as the mean delay experienced by both types of packets and probability tails of these delays.  相似文献   

19.
Ayhan  Hayriye  Baccelli  François 《Queueing Systems》2001,37(1-3):291-328
We give a Taylor series expansion for the joint Laplace transform of stationary waiting times in open (max,+)-linear stochastic systems with Poisson input. Probabilistic expressions are derived for coefficients of all orders. Even though the computation of these coefficients can be hard for certain systems, it is sufficient to compute only a few coefficients to obtain good approximations (especially under the assumption of light traffic). Combining this new result with the earlier expansion formula for the mean stationary waiting times, we also provide a Taylor series expansion for the covariance of stationary waiting times in such systems.It is well known that (max,+)-linear systems can be used to represent stochastic Petri nets belonging to the class of event graphs. This class contains various instances of queueing networks like acyclic or cyclic fork-and-join queueing networks, finite or infinite capacity tandem queueing networks with various types of blocking, synchronized queueing networks and so on. It also contains some basic manufacturing models such as kanban networks, assembly systems and so forth. The applicability of this expansion technique is discussed for several systems of this type.  相似文献   

20.
Motivated by dynamic scheduling control for queueing networks, Chen and Yao [8] developed a systematic method to generate dynamic scheduling control policies for a fluid network, a simple and highly aggregated model that approximates the queueing network. This study addresses the question of how good these fluid policies are as heuristic scheduling policies for queueing networks. Using simulation on some examples these heuristic policies are compared with traditional simple scheduling rules. The results show that the heuristic policies perform at least comparably to classical priority rules, regardless of the assumptions made about the traffic intensities and the arrival and service time distributions. However, they are certainly not always the best and, even when they are, the improvement is seldom dramatic. The comparative advantage of these policies may lie in their application to nonstationary situations such as might occur with unreliable machines or nonstationary demand patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号