首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Complex formation in a Ln(III)-1,10-phenanthroline-ethyl acetate system, where Ln = La, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb, or Lu, is studied by spectrophotometric methods. The stability of the complexes is estimated. The changes in the thermodynamic parameters of complex formation and the bonding character in the lanthanide complexes with 1,10-phenanthroline and 2,2′-dipyridyl are ascertained and compared.  相似文献   

2.
The synthesis of a new series of cationic monoporphyrinates with “light” lanthanide ions is reported. The meso-tetrakis(4-pyridyl)porphyrin, (tpyp)H2, was used as the tetrapyrrole ligand, and the metallation reaction with the lanthanide ions in acetyl-acetonato form, leading to Ln(tpyp)acac, where Ln = Sm, Eu, Gd and Tb, was carried out. The cationic monoporphyrinates, Ln(tmepyp)acac, were synthesized via the corresponding Ln(tpyp)acac. These complexes are freely soluble in aqueous and non-aqueous solutions, like MeOH, H2O or N,N-dimethylformamide. Their spectroscopic properties in water and DMF solutions are reported. All the complexes were characterized on the basis of their UV-vis, IR and ESR data. No ESR spectra were obtained for cationic porphyrins in DMF for Sm, Eu and Tb, while the spectra of Gd(tmepyp)acac in DMF exhibits smaller ΔHpp (103.1 G) among the spectra of GdIII complexes. The unexpected broad signal of Eu(t-mepyp)acac, ΔHpp = 126.9 G, in H2O is discussed in terms of the formal oxidation state +2 for the central ion.  相似文献   

3.
Three new solid lanthanide(III) complexes, [Ln(1-AMUH)3] · (NO3)3 (1-AMUH = 1-amidino-O-methylurea; Ln = Eu(III), Gd(III), or Tb(III)) were synthesised and characterised by elemental analysis, infrared spectra, magnetic moment measurement, and electron paramagnetic resonance (EPR) spectra for Gd(III) complex. The formation of lanthanide(III) complexes is confirmed by the spectroscopic studies. The photophysical properties of Gd(III), Eu(III), and Tb(III) complexes in solid state were investigated. The Tb(III) complex exhibits the strongest green emission at 543 nm and the Eu(III) complex shows a red emission at 615 nm while the Gd(III) complex shows a weak emission band at 303 nm. Under excitation with UV light, these complexes exhibited an emission characteristic of central metal ions. The powder EPR spectrum of the Gd(III) complex at 300 K exhibits a single broad band with g = 2.025. The bi-exponential nature of the decay lifetime curve is observed in the Eu(III) and Tb(III) complexes. The results reveal them to have potential as luminescent materials.  相似文献   

4.
Seven new μ‐oxamido copper(II)‐lanthanide(III) heterobimetalic complexes described by the formula Cu(obbz) Ln‐(Ph‐phen)2NO3(Ln = La, Nd, Eu, Gd, Tb, Ho, Er), where obbz denotes the oxamidobis(benzoato) and Ph‐phen represents 5‐phenyl‐1, 10‐phenanthroline, have been synthesized and characterized by the elemental analyses, spectroscopic (IR, UV, ESR) studies, magnetic moments (at room temperature) and molar conductivity measurement. The temperature dependence of the magnetic susceptibility of Cu(obbz)Gd(Ph‐phen)2NO3 complex has been measured over the range 4.2–300 K. The least‐squares fit of the experimental susceptibilities based on the spin Hamiltonian operator, ? = ?2 J?1·?2, yielded J= +1.28 cm?1, a weak ferromagnetic coupling, A plausible mechanism for a ferromagnetic coupling between Gd(III)‐Cu(II) is discussed in terms of spin‐polarization.  相似文献   

5.
The synthesis of a new ligand (1) containing a single phenanthroline (phen) chromophore and a flexibly connected diethylenetriamine tetracarboxylic acid unit (DTTA) as a lanthanide (Ln) coordination site is reported [1 is 4-[(9-methyl-1,10-phenantrol-2-yl)methyl]-1,4,7-triazaheptane-1,1,7,7-tetraacetic acid]. From 1, an extended series of water-soluble Ln.1 complexes was obtained, where Ln is Eu(III), Tb(III), Gd(III), Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III). The stoichiometry for the association was found 1:1, with an association constant K(A) > or = 10(7) s(-1) as determined by employing luminescence spectroscopy. The luminescence and photophysical properties of the series of lanthanide complexes were investigated in both H2O and D2O solutions. High efficiencies for the sensitized emission, phi(se), in air-equilibrated water were observed for the Ln.1 complexes of Eu(III) and Tb(III) in the visible region (phi(se) = 0.24 and 0.15, respectively) and of Sm(III), Dy(III), Pr(III), Ho(III), Yb(III), Nd(III), and Er(III) in the vis and/or near-infrared region [phi(se) = 2.5 x 10(-3), 5 x 10(-4), 3 x 10(-5), 2 x 10(-5), 2 x 10(-4), 4 x 10(-5), and (in D2O) 4 x 10(-5), respectively]. For Eu.1 and Tb.1, luminescence data for water and deuterated water allowed us to estimate that no solvent molecules (q) are bound to the ion centers (q = 0). Luminescence quenching by oxygen was investigated in selected cases.  相似文献   

6.
A series of lanthanide(III) pyrrolidine dithiocarbamate complexes [Ln(Pyrrol-Dtc)3(Phen)] {Pyrrol-Dtc = pyrrolidine dithiocarbamate; Phen = 1,10-phenanthroline; Ln = La(III), Ce(III), Pr(III), Nd(III), Sm(III), Gd(III), Tb(III), Dy(III), Er(III)} have been synthesized and structurally characterized. The molecular structures of [La(Pyrrol-Dtc)3(Phen)], [Pr(Pyrrol-Dtc)3(Phen)], [Sm(Pyrrol-Dtc)3(Phen)], and [Dy(Pyrrol-Dtc)3(Phen)] have been confirmed using single crystal XRD studies. The results reveal that in these complexes, the central Ln(III) ion is coordinated to three Pyrrol-Dtc and one Phen and possesses a distorted dodecahedron geometry. Catalytic activity of these complexes in trimethylsilylcyanation reaction has been studied.  相似文献   

7.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

8.
A novel mixed-ligand complexes with empirical formulae: Ln(4-bpy)1.5(CCl3COO)3·nH2O (where Ln(III) = Pr, Sm, Eu, Gd, Tb; n = 1 for Pr, Sm, Eu and n = 3 for Gd, Tb; 4-bpy = 4,4′-bipyridine) were prepared and characterized by chemical, elemental analysis and IR spectroscopy. Conductivity studies (in methanol, dimethylformamide and dimethylsulfoxide) were also described. All complexes are crystalline. The way of metal–ligand coordination was discussed. The thermal properties of complexes in the solid state were studied under non-isothermal conditions in air atmosphere. During heating the complexes decompose via intermediate products to the oxides: Pr6O11, Ln2O3 (for Sm, Eu, Gd) and Tb4O7. TG-MS system was used to analyze principal volatile thermal decomposition and fragmentation products evolved during pyrolysis of Pr(III) and Sm(III) compounds in air.  相似文献   

9.
Four Ln(III) complexes based on a new nitronyl nitroxide radical have been synthesized and structurally characterized: {Ln(hfac)3[NITPh(MeO)2]2} (Ln = Eu( 1 ), Gd( 2 ), Tb( 3 ), Dy( 4 ); NITPh(MeO)2 = 2‐(3′,4′‐dimethoxyphenyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide; hfac = hexafluoroacetylacetonate). The single‐crystal X‐ray diffraction analysis shows that these complexes have similar mononuclear trispin structures, in which central Ln(III) ion is eight‐coordinated by two O‐atoms from two nitroxide groups and six O‐atoms from three hfac anions. The variable temperature magnetic susceptibility study reveals that there exist ferromagnetic interactions between Gd(III) and the radicals, and antiferromagnetic interactions between two radicals (JGd‐Rad = 3.40 cm?1, JRad‐Rad = ?9.99 cm?1) in complex 2 . Meanwhile, antiferromagnetic interactions are estimated between Eu(III) (or Dy(III)) and radicals in complexes 1 and 4 , and ferromagnetic interaction between Tb(III) and radicals in complex 3 , respectively.  相似文献   

10.
Just O  Rees WS 《Inorganic chemistry》2001,40(8):1751-1755
Anhydrous lanthanide(III) chlorides (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb) react with 3 equiv of lithium 2,2,5,5-tetramethyl-2,5-disila-1-azacyclopentanide, Li[N[Si(CH3)2CH2Ch2Si(CH3)2]], in THF or Et(2)O to afford the monomeric four-coordinate heteroleptic ate complexes Ln[N[Si(CH3)2CH2CH2Si(CH3)2]]3(mu-Cl)Li(THF/Et2O)3 (Ln = Sm (1), Eu (2), Gd (3), Tb (4), Dy (5), Ho (6), Er (7), Tm (8), Yb (9)), whose solid-state structures were determined by the single-crystal X-ray diffraction technique. All complexes additionally were characterized by melting point determination, elemental analyses, and mass spectrometry.  相似文献   

11.
Treatment of Ln(NO3)3?nH2O with 1 or 2 equiv 2,2′‐bipyrimidine (BPM) in dry THF readily afforded the monometallic complexes [Ln(NO3)3(bpm)2] (Ln=Eu, Gd, Dy, Tm) or [Ln(NO3)3(bpm)2]?THF (Ln=Eu, Tb, Er, Yb) after recrystallization from MeOH or THF, respectively. Reactions with nitrate salts of the larger lanthanide ions (Ln=Ce, Nd, Sm) yielded one of two distinct monometallic complexes, depending on the recrystallization solvent: [Ln(NO3)3(bpm)2]?THF (Ln=Nd, Sm) from THF, or [Ln(NO3)3(bpm)(MeOH)2]?MeOH (Ln=Ce, Nd, Sm) from MeOH. Treatment of UO2(NO3)2?6H2O with 1 equiv BPM in THF afforded the monoadduct [UO2(NO3)2(bpm)] after recrystallization from MeOH. The complexes were characterized by their crystal structure. Solid‐state luminescence measurements on these monometallic complexes showed that BPM is an efficient sensitizer of the luminescence of both the lanthanide and the uranyl ions emitting visible light, as well as of the YbIII ion emitting in the near‐IR. For Tb, Dy, Eu, and Yb complexes, energy transfer was quite efficient, resulting in quantum yields of 80.0, 5.1, 70.0, and 0.8 %, respectively. All these complexes in the solid state were stable in air.  相似文献   

12.
The coordination compounds of the trivalent lanthanide ions (Ln(III)) have unique photophysical properties. Ln(III) excitation is usually performed through a light-harvesting antenna. To enable Ln(III)-based emitters to reach their full potential, an understanding of how complex structure affects sensitization and quenching processes is necessary. Here, the role of the linker between the antenna and the metal binding fragment was studied. Four macrocyclic ligands carrying coumarin 2 or 4-methoxymethylcarbostyril sensitizing antennae linked to an octadentate macrocyclic ligand binding site were synthesized. Complexation with Ln(III) (Ln = La, Sm, Eu, Gd, Tb, Yb and Lu) yielded species with overall −1, 0, or +2 and +3-charge. Paramagnetic 1H NMR spectroscopy indicated subtle differences between the coumarin- and carbostyril-carrying Eu(III) and Yb(III) complexes. Cyclic voltammetry showed that the effect of the linker on the Eu(III)/Eu(II) apparent reduction potential was dependent on the electronic properties of the N-substituent. The Eu(III), Tb(III) and Sm(III) complexes were all luminescent. Coumarin-sensitized complexes were poorly emissive; photoinduced electron transfer was not a major quenching pathway in these species. These results show that seemingly similar emitters can undergo very different photophysical processes, and highlight the crucial role the linker can play.  相似文献   

13.
Two zwitterionic‐type ligands featuring π–π* and intraligand charge‐transfer (ILCT) excited states, namely 1,1′‐(2,3,5,6‐tetramethyl‐1,4‐phenylene)bis(methylene)dipyridinium‐4‐olate (TMPBPO) and 1‐dodecylpyridin‐4(1 H)‐one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand‐direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide‐band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln3+ ions were observed to cover the visible to near‐infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single‐component white light was achieved by preparation of solid solutions of the ternary systems Gd‐Eu‐Tb (for TMPBPO) and La‐Eu‐Tb and La‐Dy‐Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm3+ (3H4) and Yb3+ (2F5/2) decay dynamics, which has not been explored before for their coordination complexes.  相似文献   

14.
Three series of copper–lanthanide/lanthanide coordination polymers (CPs) LnIIICuIICuI(bct)3(H2O)2 [Ln=La ( 1 ), Ce ( 2 ), Pr ( 3 ), Nd ( 4 ), Sm ( 5 ), Eu ( 6 ), Gd ( 7 ), Tb ( 8 ), Dy ( 9 ), Er ( 10 ), Yb ( 11 ), and Lu ( 12 ), H2bct=2,5‐bis(carboxymethylmercapto)‐1,3,4‐thiadiazole acid], LnIIICuI(bct)2 [Ln=Ce ( 2 a ), Pr ( 3 a ), Nd ( 4 a ), Sm ( 5 a ), Eu ( 6 a ), Gd ( 7 a ), Tb ( 8 a ), Dy ( 9 a ), Er ( 10 a ), Yb ( 11 a ), and Lu ( 12 a )], and LnIII2(bct)3(H2O)5 [Ln=La ( 1 b ), Ce ( 2 b ), Pr ( 3 b ), Nd ( 4 b ), Sm ( 5 b ), Eu ( 6 b ), Gd ( 7 b ), Tb ( 8 b ), and Dy ( 9 b )] have been successfully constructed under hydrothermal conditions by modulating the reaction time. Structural characterization has revealed that CPs 1 – 12 possess a unique one‐dimensional (1D) strip‐shaped structure containing two types of double‐helical chains and a double‐helical channel. CPs 2 a – 12 a show a three‐dimensional (3D) framework formed by CuI linking two types of homochiral layers with double‐helical channels. CPs 1 b – 9 b exhibit a 3D framework with single‐helical channels. CPs 6 b and 8 b display visible red and green luminescence of the EuIII and TbIII ions, respectively, sensitized by the bct ligand, and microsecond‐level lifetimes. CP 8 b shows a rare magnetic transition between short‐range ferromagnetic ordering at 110 K and long‐range ferromagnetic ordering below 10 K. CPs 9 a and 9 b display field‐induced single‐chain magnet (SCM) and/or single‐molecule magnet (SMM) behaviors, with Ueff values of 51.7 and 36.5 K, respectively.  相似文献   

15.
Twelve coordinate lanthanide (III) complexes with the general composition [Ln L3Xn(H2O)n] where Ln = Pr(III), Sm(III), Eu (III), Gd (III), Tb (III), Dy (III), X = Cl?1, NO3 ?2, n = 2–7, and L is 1-(4-chlorophenyl)-3-(4-fluoro/hydroxyphenyl)prop-2-en-1- thiosemicarbazone have been prepared. The lanthanide complexes (5) were derived from the reaction between 1-(4-chlorophenyl)-3-(4-fluoro/hydroxyphenyl)prop-2-en-1-thiosemicarbazone (4) with an aqueous solution of lanthanide salt. Chalcone thiosemicarbazone ligand (4) was prepared by the reaction of [1-(4-chlorophenyl)-3-(4-fluoro/hydroxyphenyl)]prop-2-enone (chalcone) (3) with thiosemicarbazide in the presence of hot ethanol. All the lanthanide-ligand 1:3 complexes have been isolated in the solid state, are stable in air, and characterized on the basis of their elemental and spectral data.

Thiosemicarbazone ligands behave as bidentate ligands by coordinating through the sulfur of the isocyanide group and nitrogen of the cyanide residue. The probable structure for all the lanthanide complexes is also proposed. The chalcone thiosemicarbazone ligands and their lanthanide complexes have been screened for their antifungal and antibacterial studies. Some of the synthesized lanthanide complexes have shown enhanced activity compared with that of the free ligand.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

16.
Trinuclear lanthanide complexes of the formula [Ln(3)(PPDA)(NO(3))(6)(H(2)O)(2)].NO(3).2H(2)O where Ln=La(III), Pr(III), Sm(III), Nd(III), Eu(III) Gd(III) Tb(III), Dy(III) and Y(III); H(2)PPDA=N,N'-bis(2-pyridinyl)-2,6-pyridinedicarboxamide, have been isolated. The complexes were characterized by elemental analyses, conductivity measurements, magnetic susceptibility measurements and spectral (IR, NMR, UV-vis, fluorescence, FAB and EPR) and thermal studies.  相似文献   

17.
Eight isomorphous metal‐organic frameworks: [Ln2(TATAB)2(H2O)(DMA)6]·5H2O (Ln = Sm ( 1 ), Eu ( 2 ), Gd ( 3 ), Tb ( 4 ), Dy ( 5 ), Er ( 6 ), Tm ( 7 ), Yb ( 8 )); TATAB = 4,4′,4″‐s‐triazine‐1,3,5‐triyl‐p‐aminobenzoate, DMA = N,N‐dimethylacetamide), were synthesized by the self‐assembly of lanthanide ions, TATAB, DMA and H2O. Single‐crystal X‐ray crystallography reveals they are three dimensional frameworks with 2‐fold interpenetration. Solid‐state photoluminescence studies indicate ligand‐to‐metal energy transfer is more efficient for compounds 2 and 4 which exhibit intense characteristic lanthanide emissions at room temperature.  相似文献   

18.
Complexes of the general formula LnL3 · Phen (Ln = Nd, Sm, Eu, Gd, Tb, Dy, and Yb; HL = 4-formyl-3-methyl-1-phenylpyrazol-5-one, Phen = 1,10-phenanthroline) were obtained and examined by IR spectroscopy and thermogravimetry. The structure of the complex TbL3 · Phen was studied by X-ray diffraction. The coordination polyhedron of terbium is a distorted square antiprism made up of six O atoms of three 4-formylpyrazol-5-one anions and two N atoms of the 1,10-phenanthroline molecule. Polycrystalline samples of the complexes studied show emission in the spectral ranges characteristic of Ln(III).  相似文献   

19.
Xia J  Zhao B  Wang HS  Shi W  Ma Y  Song HB  Cheng P  Liao DZ  Yan SP 《Inorganic chemistry》2007,46(9):3450-3458
3,5-pyrazoledicarboxylic acid (H3L) reacts with nitrate salts of lanthanide(III) (Ln=Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er) under hydrothermal conditions to form a series of lanthanide polymers 1-9. These nine polymers have the same crystal system of monoclinic, but they exhibit three different kinds of metal-organic framework structures. The complexes {[Ln2(HL)3(H2O)4].2H2O}n (Ln=Pr (1), Nd (2), and Sm (3)) were isostructural and exhibited porous 3D frameworks with a Cc space group. The complexes {[Ln2(HL)3(H2O)3].3H2O}n (Ln=Eu (4), Gd (5), and Tb (6)) were isostructural and built 2D double-decker (2DD) frameworks with a P21/c space group. The complexes {[Ln(HL)(H2L)(H2O)2]}n ((Ln=Dy (7), Ho (8), and Er (9)) were also isostructural and formed 2D monolayer (2DM) frameworks with a P21/n space group. The structure variation from the 3D porous framework to the 2D double-decker to the 2D monolayer is attributed to the lanthanide contraction effect. Notably, six new coordination modes of 3,5-pyrazoledicarboxylic acid were observed, which proved that 3,5-pyrazoledicarboxylic acid may be used as an effective bridging ligand to assemble lanthanide-based coordination polymers. The photophysical and magnetic properties have also been investigated.  相似文献   

20.
Formation thermodynamics of binary and ternary lanthanide(III) (Ln = La, Ce, Nd, Eu, Gd, Dy, Tm, Lu) complexes with 1,10-phenanthroline (phen) and the chloride ion have been studied by titration calorimetry and spectrophotometry in N,N-dimethyl-formamide (DMF) containing 0.2 mol-dm–3 (C2H5)4NClO4 as a constant ionic medium at 25°C. In the binary system with 1,10-phenanthroline, the Ln(phen)3+ complex is formed for all the lanthanide(III) ions examined. The reaction enthalpy and entropy values for the formation of Ln(phen)3+ decrease in the order La > Ce > Nd, then increase in the order Nd < Eu < Gd < Dy, and again decrease in the order Dy > Tm > Lu. The variation is explained in terms of the coordination structure of Ln(phen)3+ that changes from eight to seven coordination with decreasing ionic radius of the metal ion. In the ternary Ln3+-Cl-phen system, the formation of LnCl(phen)2+, LnCl2(phen)+, and LnCl3(phen) was established for cerium(III), neodymium(III), and thulium(III), and their formation constants, enthalpies, and entropies were obtained. The enthalpy and entropy values are also discussed from the structural point of view.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号