首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analysis is presented for the unsteady laminar flow of an incompressible Newtonian fluid in an annulus between two concentric spheres rotating about a common axis of symmetry. A solution of the Navier-Stokes equations is obtained by employing an iterative technique. The solution is valid for small values of Reynolds numbers and acceleration parameters of the spheres. In applying the results of this analysis to a rotationally accelerating sphere, a virtual moment of intertia is introduced to account for the local inertia of the fluid.Nomenclature R i radius of the inner sphere - R o radius of the outer sphere - radial coordinate - r dimensionless radial coordinate, - meridional coordinate - azimuthal coordinate - time - t dimensionless time, - Re i instantaneous Reynolds number of the inner sphere, i R k 2 / - Re o instantaneous Reynolds number of the outer sphere, o R o 2 / - radial velocity component - V r dimensionless radial velocity component, - meridional velocity component - V dimensionless meridional velocity component, - azimuthal velocity component - V dimensionless azimuthal velocity component, - viscous torque - T dimensionless viscous torque, - viscous torque at surface of inner sphere - T i dimensionless viscous torque at surface of inner sphere, - viscous torque at surface of outer sphere - T o dimensionless viscous torque at surface of outer sphere, - externally applied torque on inner sphere - T p,i dimensionless applied torque on inner sphere, - moment of inertia of inner sphere - Z i dimensionless moment of inertia of inner sphere, - virtual moment of inertia of inner sphere - Z i,v dimensionless virtual moment of inertia of inner sphere, - virtual moment of inertia of outer sphere - i instantaneous angular velocity of the inner sphere - o instantaneous angular velocity of the outer sphere - density of fluid - viscosity of fluid - kinematic viscosity of fluid,/ - radius ratio,R i/R o - swirl function, - dimensionless swirl function, - stream function - dimensionless stream function, - i acceleration parameter for the inner sphere, - o acceleration parameter for the outer sphere, - shear stress - r dimensionless shear stress,   相似文献   

2.
An analytical continuum solution of the Rayleigh problem in slip flow with applied magnetic field is obtained using a modified initial condition and slip boundary conditions. The results are uniformly valid for all times and show that the velocity slip and the local skin friction coefficient remain almost unaffected by the imposition of the magnetic field for small times. They increase however with the magnetic field for large times. The present results reduce to the corresponding results of the hydrodynamic case when there is no magnetic field.Nomenclature A constant - b characteristic length - B magnetic field vector - B 0 magntidue of the applied magnetic field normale to the plate - B x magnitude of the induced magnetic field parallel to the plate - C slip coefficient, (2–f)/f - C f skin friction coefficient, - C D average drag coefficient - erfc(x) complementary error function, - E electric field vector - f Maxwell's reflection coefficient - H a Hartmann number, (B 0 2 b 2/)1/2 - nondimensional magnetic parameter - J current vector - Kn=L/b Knudsen number - L mean free path - M Mach number - p constant parameter - P m magnetic Prandtl number, Re m/Re= 0 - q velocity vector - Re Reynolds number, Ub/ - Re m magnetic Reynolds number, 0 Ub - t time - nondimensional time, tU/b - u velocity of the fluid parallel to the plate - nondimensional velocity, u/U - U velocity of the plate - Laplace transform of - x, y coordinates along and normal to the plate respectively - y nondimensional distance, y/b - Z nondimensional parameter, 1/Re 1/2 Kn - ratio of specific heats - boundary layer thickness - velocity slip - viscosity - 0 magnetic permeability - kinematic viscosity - nondimensional time parameter, ( /Re)1/2/Kn - density - electrical conductivity  相似文献   

3.
Zusammenfassung Zur Analyse des Fließens einer direkt an der Düsenwand gleitendenOstwald-deWaele-Flüssigkeit (Potenzgesetz) wird ein Modell entwickelt, das die rheologischen Vorgänge tribologisch, d. h. analog derCoulombschen Reibung fester Körper beschreibt.Es zeigt sich, daß in der Düse zwei Bereiche zu unterscheiden sind: ein Haftbereich in der Nähe des Düseneinlaufs und ein am Düsenaustritt liegender Gleitbereich. Die Länge des Gleitbereichs, der Verlauf des Drucks und der Schubspannung längs der Düse sowie die Änderung des Geschwindigkeitsprofils im Gleitbereich werden ermittelt.Überschreitet die Wandschubspannung einen kritischen Betrag, so entsteht am Düsenende ein labiler Bereich, in dem der Betrag der Wandschubspannung sprunghaft auf einen kleineren Wert sinken kann. Der von verschiedenen Autoren gefundene Sprung in der Fließkurve bestimmter Polymerschmelzen kann damit grundsätzlich erklärt werden.
Summary Starting from theCoulomb Friction Law for solids, a theoretical model is developed for the pressure flow of a viscous power-law fluid with slip at the wall.It is shown that two flow regions exist in the die: a first region at the upstream part of the die, where the fluid sticks to the wall; and a second region at the downstream part of the die, where the fluid slips at the wall. The length of the slip region, the development of pressure and shear stress along the die as well as the change of the velocity distribution are given for the slip region.For shear stresses above a critical value, an instability region is found at the exit of the die. In this region, a sudden decrease of shear stress can occur. This seems to explain the discontinuity in the flow curve reported by several investigators.

F Querschnittsfläche der Kapillaren - Volumendurchsatz - K R Reibkraft - L Düsenlänge - m Stoffwert (Fließexponent) - N Normalkraft - p hydrostatischer Druck - p L Druck am Düsenende - p 1 Druck an der Übergangsstelle Haften-Gleiten - p 0 Druck vor der Düse - p 0H Druck vor der Düse im Falle des Wandhaftens - r Radius - R Düsenradius - v g Gleitgeschwindigkeit - v z Strömungsgeschwindigkeit inz-Richtung - z Koordinate in Strömungsrichtung - z 1 Längskoordinate der Übergangsstelle Haften-Gleiten - Schergeschwindigkeit - Stoffwert - Viskosität - µ Gleitkoeffizient - µ H Haftkoeffizient - Dichte - dimensionsloser Radiusr/R - rz Schubspannung in der Flüssigkeit - rz (R) Wandschubspannung in der Flüssigkeit - 0 Stoffwert - wg Wandschubspannung im Falle des Gleitens - wH Haftschubspannung an der Wand Auszugsweise vorgetragen auf der Jahrestagung der Deutschen Rheologen in Berlin vom 28.–30. April 1975.Mit 10 Abbildungen  相似文献   

4.
An analysis is presented for laminar source flow between infinite parallel porous disks. The solution is in the form of a perturbation from the creeping flow solution. Expressions for the velocity, pressure, and shear stress are obtained and compared with the results based on the assumption of creeping flow.Nomenclature a half distance between disks - radial coordinate - r dimensionless radial coordinate, /a - axial coordinate - z dimensionless axial coordinate, /a - radial coordinate of a point in the flow - R dimensionless radial coordinate of a point in the flow, /a - velocity component in radial direction - u =a/, dimensionless velocity component in radial direction - velocity component in axial direction - v = a/}, dimensionless velocity component in axial direction - static pressure - p = (a 2/ 2), dimensionless static pressure - =p(r, z)–p(R, z), dimensionless pressure drop - V magnitude of suction or injection velocity - Q volumetric flow rate of the source - Re source Reynolds number, Q/4a - reduced Reynolds number, Re/r 2 - critical Reynolds number - R w wall Reynolds number, Va/ - viscosity - density - =/, kinematic viscosity - shear stress at upper disk - 0 = (a 2/ 2), dimensionless shear stress at upper disk - shear stress ratio, 0/( 0)inertialess - u = , dimensionless average radial velocity - u/u, ratio of radial velocity to average radial velocity - dimensionless stream function  相似文献   

5.
A cylindrical annular liquid layer between two plates and around a rigid center-core consisting of incompressible and viscous liquid is subjected to different axial excitations, such as one-sided, counter-directional and double-sided unequal excitations. The response of the free liquid surface, the velocity- and pressure-distribution has been determined.
Zusammenfassung Eine zylindrische Flüssigkeitsschicht bestehend aus inkompressibler und viskoser Flüssigkeit wurde verschiedenen harmonischen Anregungsformen ausgesetzt. Dabei wurden die Fälle einseitiger, doppelseitiger entgegengesetzter und ungleicher doppelseitiger Anregung mit Phase behandelt. Die Vergrößerungsfunktionen für die freie Flüssigkeitsoberfläche, für die Geschwindigkeits- und Druckverteilung wurden bestimmt.

List of symbols a radius of liquid layer - b radius of inner cylindrical core - (ab) thickness of layer - e r , e , k unit vectors in the radial, angular and axial direction resp. - h length of layer - I m , K m modified Bessel functions of first and second kind and order m - diameter ratio - p pressure - q 2na/h - q* na/h - r, , z cylindrical coordinates - complex frequency - S sa 2/ - t time - u, w velocity components in the radial- and axial direction - 0 excitation amplitude - abbreviation - surface tension parameter - surface tension - dynamic viscosity - kinematic viscosity - density of liquid - free liquid surface elevation - dimensionless time - rz shear stress - reduced forcing frequency - forcing frequency - stream function - mn natural frequency of non-viscous liquid  相似文献   

6.
B. Hinkelmann 《Rheologica Acta》1982,21(4-5):491-493
From literature some representative equations have been compiled describing the influence of filler on the viscosity of polymer melts. By application of these on the experimental results obtained from GF-SAN it was found that the relative viscosity R , i.e. the ratio of the viscosities of the filled and unfilled melt, shows a pronounced dependence on the shear rate but not on the shear stress. Defining R with constant and not with constant (as it is usually done), an analytical approach is possible independent of Further the influence of pressure, temperature and filler content on the zero-shear viscosity of filled polymer melts may be expressed by a modified Arrhenius equation.
  相似文献   

7.
In recent years there has been an increasing interest in the control of boundary-layer transition through the use of wall suction. In the current work suction is provided through one or more suction panels situated close to the leading edge of a plate. Experiments show that boundary-layer pressure fluctuation measurements can be used to identify the position of transition. Transition can be maintained at a desired location with minimum power consumption by employing an automatic adaptive feedback control loop which regulates the suction flow rates of two independent suction panels. This can be expressed as a constrained optimization problem. To allow the suction flow rates to be updated, a modified least mean squares algorithm is used within the control loop. Experimental measurements show that the control algorithm allows fast and stable convergence towards the optimum suction distribution for a double suction panel configuration. Numerical simulations have also been performed. The two-dimensional boundary layer was calculated allowing the viscous boundary layer to interact with the inviscid outer flow. Following linear stability theory the spatial growth rates are calculated by solving an Orr-Sommerfeld type eigenvalue problem, with the streamwise location of transition predicted via thee N -method. Applying the same optimization strategy as in the experiments, good qualitative agreement between computations and experiments was found. The optimization algorithm has been applied to computer models where the relation between suction flow rates and transition location is described by an empirical analytical function. This shows that the controller can in principle be applied to systems with more than two suction panels.Nomenclature b transition location with zero suction - d desired transition location - e(k) error signal - k iteration index - p rms pressure - p ref reference rms pressure - r sum of the reference pressure - u streamwise velocity - u e external velocity - inviscid external velocity - A wave amplitude - F( ) cost function - I identity matrix - N maximum amplification factor - P projection matrix - R Reynolds number - Re Reynolds number based on the boundary-layer thickness - R matrix of weights - Tu turbulence level - vector of suction flow rates - v normal velocity - v wall suction velocity at the surface - x streamwise coordinates - x m microphone location - x T(k) measured transition location - y normal coordinate - y(k) sum of the measured pressures - w(k) noise - plate length - r +i i - free stream velocity - * displacement thickness - gradient vector - Lagrange multiplier - controller gain - disturbance stream function - disturbance amplitude - wave frequency = complex wave number  相似文献   

8.
Transient propagation of weak pressure perturbations in a homogeneous, isotropic, fluid saturated aquifer has been studied. A damped wave equation for the pressure in the aquifer is derived using the macroscopic, volume averaged, mass conservation and momentum equations. The equation is applied to the case of a well in a closed aquifer and analytical solutions are obtained to two different flow cases. It is shown that the radius of influence propagates with a finite velocity. The results show that the effect of fluid inertia could be of importance where transient flow in porous media is studied.List of symbols b Thickness of the aquifer, m - c 0 Wave velocity, m/s - k Permeability of the porous medium, m2 - n Porosity of the porous medium - p( ,t) Pressure, N/m2 - Q Volume flux, m3/s - r Radial coordinate, m - r w Radius of the well, m - s Transform variable - S Storativity of the aquifer - S d(r, t) Drawdown, m - t Time, s - T Transmissivity of the aquifer, m2/s - ( ,t) Velocity of the fluid, m/s - Coordinate vector, m - z Vertical coordinate, m - Coefficient of compressibility, m2/N - Coefficient of fluid compressibility, m2/N - Relaxation time, s - (r, t) Hydraulic potential, m - Dynamic viscosity of the fluid, Ns/m2 - Dimensionless radius - Density of the fluid, Ns2/m4 - (, ) Dimensionless drawdown - Dimensionless time - , x Dummy variables - 0, 1 Auxilary functions  相似文献   

9.
If a fluid enters an axially rotating pipe, it receives a tangential component of velocity from the moving wall, and the flow pattern change according to the rotational speed. A flow relaminarization is set up by an increase in the rotational speed of the pipe. It will be shown that the tangential- and the axial velocity distribution adopt a quite universal shape in the case of fully developed flow for a fixed value of a new defined rotation parameter. By taking into account the universal character of the velocity profiles, a formula is derived for describing the velocity distribution in an axially rotating pipe. The resulting velocity profiles are compared with measurements of Reich [10] and generally good agreement is found.Nomenclature b constant, equation (34) - D pipe diameter - l mixing length - l 0 mixing length in a non-rotating pipe - N rotation rate,N=Re /Re D - p pressure - R pipe radius - Re D flow-rate Reynolds number, - Re rotational Reynolds number, Re =v w D/ - Re* Reynolds number based on the friction velocity, Re*=v*R/ - (Re*)0 Reynolds number based on the friction velocity in a non-rotating pipe - Ri Richardson number, equation (10) - r coordinate in radial direction - dimensionless coordinate in radial direction, - v r ,v ,v z time mean velocity components - v r ,v ,v z velocity fluctations - v w tangential velocity of the pipe wall - v* friction velocity, - axial mean velocity - v ZM maximum axial velocity - dimensionless radial distance from pipe wall, - y + dimensionless radial distance from pipe wall - y 1 + constant - Z rotation parameter,Z =v w/v * =N Re D /2Re* - m eddy viscosity - ( m )0 eddy viscosity in a non-rotating pipe - coefficient of friction loss - von Karman constant - 1 constant, equation (31) - density - dynamic viscosity - kinematic viscosity  相似文献   

10.
An analysis is presented for laminar source flow between parallel stationary porous disks with suction at one of the disks and equal injection at the other. The solution is in the form of an infinite series expansion about the solution at infinite radius, and is valid for all suction and injection rates. Expressions for the velocity, pressure, and shear stress are presented and the effect of the cross flow is discussed.Nomenclature a distance between disks - A, B, ..., J functions of R w only - F static pressure - p dimensionless static pressure, p(a 2/ 2) - Q volumetric flow rate of the source - r radial coordinate - r dimensionless radial coordinate, r/a - R radial coordinate of a point in the flow region - R dimensionless radial coordinate of a point in the flow region, R - Re source Reynolds number, Q/2a - R w wall Reynolds number, Va/ - reduced Reynolds number, Re/r 2 - critical Reynolds number - velocity component in radial direction - u dimensionless velocity component in radial direction, a/ - average radial velocity, Q/2a - u dimensionless average radial velocity, Re/r - ratio of radial velocity to average radial velocity, u/u - velocity component in axial direction - v dimensionless velocity component in axial direction, v - V magnitude of suction or injection velocity - z axial coordinate - z dimensionless axial coordinate, z a - viscosity - density - kinematic viscosity, / - shear stress at lower disk - shear stress at upper disk - 0 dimensionless shear stress at lower disk, - 1 dimensionless shear stress at upper disk, - dimensionless stream function  相似文献   

11.
    
Heat transfer in the flow of a conducting Fluid between two non-conducting porous disks (—one is rotating and other is stationary) in the presence of a transverse uniform magnetic field and under uniform suction, is studied. Asymptotic solutions are obtained for R«M 2. The rate of Heat flux from the disks and the temperature distribution are investigated. It is observed that the temperature distribution and heat flux increase with the increase of magnetic field.Nomenclature B 0 imposed magnetic field - density of the fluid - velocity vector - p pressure - viscosity of the fluid - kinematic viscosity of the fluid - J r radial component of current density - J azimuthal component of current density - J z axial component of current density - m magnetic permeability - electrical conductivity of the fluid - U suction velocity - E r radial component of electric field - E azimuthal component of electric field - E z axial component of electric field - c p specific heat at constant pressure - angular velocity of the rotating disk - u radial component of velocity - v azimuthal component of velocity - w axial component of velocity - F() dimensionless function defined in (17) - G() dimensionless function defined in (17) - () dimensionless function defined in (18) - () dimensionless function defined in (18) - dimensionless axial distance - R suction Reynolds number, Uh/ - R 1 rotation Reynolds number, h 2/ - M Hartmann number, B 0 h(/)1/2 - P Prandtl number, c p /R - = 2R 1 2 /R 2 - dimensionless quantity - N Perturbation parameter, M 2/R - k Co-efficient of thermal conductivity - s Dimensionless quantity defined in (30) as . - E Dimensionless quantity defined as . - X Dimensionless quantity defined as . - K Constant defined in (22)  相似文献   

12.
Summary A probabilistic model of the geometric imperfections of a real structure is proposed, in order to provide a general theory of the stochastic response of structures in presence of small random deviations from the perfect scheme. The main statistical measures of the stochastic response are derived and an application to the study of a particular conservative elastic system is developed.
Sommario Si propone una teoria generale della risposta probabilistica di strutture, in presenza di piccole deviazioni aleatorie dei dati iniziali rispetto allo schema geometrico perfetto. Si deducono le principali proprietà statistiche della risposta della struttura a sollecitazioni esterne deterministiche, e si sviluppa una applicazione riguardante il comportamento aleatorio di un particolare sistema elastico conservativo.

List of symbols element of the sample space of events - kn random variables modelling the structural imperfections - P(o) probability density of random variables - random imperfection of the unloaded structure - u additional displacement of the loaded structure - uo deterministic fundamental solution for the perfect structure - difference between the additional displacement of the loaded structure and the deterministic fundamental solution for the perfect structure - V1=u1 buckling mode of the perfect structure - i intrinsic coordinates of the structure - suitable measure of the magnitude of the random imperfections - scalar geometric variable representing the internal product - random imperfection divided by - single scalar variable denoting the magnitude of the prescribed loads - potential energy of the structure - potential energy of the perfect structure - difference between and - c lowest critical load - s real local maximum for the magnitude of the prescribed loads - c divided by S - E{} expected value of a random variable - 2 variance of a random variable - , random variables defined by Eq. (21)  相似文献   

13.
A technique is described which employs automated image processing of hydrogen-bubble flow visualization pictures to establish local, instantaneous velocity profile information. Hydrogen bubble flow visualization sequences are recorded using a high-speed video system and then digitized, stored, and evaluated by a VAX 11/780 computer. Employing special smoothing and gradient detection algorithms, individual bubble-lines are computer identified, which allows local velocity profiles to be constructed using time-of-flight techniques. It is demonstrated how this techniques may be used to 1) determine local velocity behavior as a function of position and time, 2) evaluate time-averaged turbulence properties, and 3) correlate probe-type turbulent burst detection techniques with the corresponding visualization data.List of symbols Re Reynolds number based on momentum thickness, u / - t + nondimensional time tu 2 / - T VITA variance averaging time period - u shear velocity = - u local instantaneous streamwise velocity,x-direction - u local fluctuating streamwise velocity,x-direction - u + nondimensional streamwise velocity, /u - local normal velocity,y-direction - w local spanwise velocity,z-direction - x + nondimensional coordinate in streamwise direction xu /v - y + nondimensional coordinate normal to wall, yu /v Greek momentum thickness, - kinematic viscosity - w wall shear stress This paper was presented at the Ninth Symposium on Turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

14.
Summary An analysis of the effects of couple-stresses on the effective Taylor diffusion coefficient has been carried out with the help of two non-dimensional parameters based on the concentration of suspensions and , a constant associated with the couple-stresses. It is observed that the concentration distribution increases with increasing or The effective Taylor diffusion coefficient falls rapidly with increasing when is negative.
Zusammenfassung Der Einfluß der Momentenspannungen auf den effektiven Taylorschen Diffusionskoeffizienten wird untersucht. Dabei treten zwei dimensionslose Parameter and auf: Der erste bezieht sich auf die Suspensionskonzentration, der zweite kennzeichnet die Momentenspannungen. Man findet, daß die Verteilungsgeschwindigkeit mit wachsendem oder zunimmt. Dagegen fällt der Taylorsche Diffusionskoeffizient bei wachsendem stark ab, wenn negativ ist.

a Tube radius - C Concentration - C i Body moment vector - C 0 Concentration at the axis of the tube - C m Mean concentration - D Molecular diffusion coefficient - d ij Symmetric part of velocity gradient - F Function of and characterising effective Taylor diffusion coefficient - f i Body force vector - H A function of and - K 2 Integration constant - K * Effective Taylor diffusion coefficient - k Radius of gyration of a unit cuboid with its sides normal to the spatial axes - I n Modified Bessel's function ofnth order - L Length of the tube over which the concentration is spread - M Function ofH and - M ij Couple stress tensor - P Function of - p Fluid pressure - Q Volume rate of the transport of the solute across a section of the tube - r Radial distance from the axis of the tube - T ij Stress tensor - t Time coordinate - T ij A Antisymmetric part of the stress tensor - u Relative fluid velocity - Average velocity - v i Velocity vector - Fluid velocity at any point of the tube - v 0 n Velocity of Newtonian fluid at the axis of the tube - i Vorticity vector - x Axial coordinate - x 1 Relative axial coordinate - z Non-Dimensional radial coordinate - Density - ij Symmetric part of the stress tensor - µ Viscosity of the fluid - µ ij Deviatoric part ofM ij - , Constants associated with couple-stress With 3 figures  相似文献   

15.
The seepage velocity arising from pressure and buoyancy driving forces in a slender vertical layer of fluid-saturated porous media is considered. Quadratic drag (Forcheimer effects) and Brinkman viscous forces are included in the analysis. Parameters are identified which characterize the influence of matrix permeability, quadratic drag and buoyancy. An explicit solution is obtained for pressure-driven flow which illustrates the influence of quadratic drag and the strong boundary layer behavior expected for low permeability media. The experimental data of Givler and Altobelli [2] for water seepage through a high porosity foam is found to yield good agreement with the present analysis. For the case of buoyancy-driven flow, a uniformly valid approximate solution is found for low permeability media. Comparison with the pressure-driven case shows strong similarities in the near-wall region.Nomenclature B function of - d layer thickness - D discriminant defined by Equation (9) - modified Darcy number - F Forcheimer constant - g gravitational acceleration - k porous matrix permeability - m parameter defined by Equation (11) - p pressure - p modified pressure - pressure gradient - R buoyancy parameter - T 0 nominal layer temperature - u seepage velocity - dimensionless seepage velocity - c composite approximation - i boundary layer velocity - o outer or core flow approximation - m midplane velocity - U matching velocity - V cross-sectional average velocity - w variable defined by Equation (12) - x, z Cartesian coordinates - , dimensionless Cartesian coordinates - inertia parameter - T layer temperature difference - larger root of cubic given by Equation (8) - fluid dynamic viscosity - e effective viscosity of fluid saturated medium - variable defined by Equation (18) - 0 fluid density - smaller root of cubic given by Equation (8) - variable defined by Equation (18) - stretched inner coordinate - porosity - function of   相似文献   

16.
In this paper the flow is studied of an incompressible viscous fluid through a helically coiled annulus, the torsion of its centre line taken into account. It has been shown that the torsion affects the secondary flow and contributes to the azimuthal component of velocity around the centre line. The symmetry of the secondary flow streamlines in the absence of torsion, is destroyed in its presence. Some stream lines penetrate from the upper half to the lower half, and if is further increased, a complete circulation around the centre line is obtained at low values of for all Reynolds numbers for which the analysis of this paper is valid, being the ratio of the torsion of the centre line to its curvature.Nomenclature A =constant - a outer radius of the annulus - b unit binormal vector to C - C helical centre line of the pipe - D rL - g 1000 - K Dean number=Re2 - L 1+r sin - M (L 2+ 2 r 2)1/2 - n unit normal vector to C - P, P pressure and nondimensional pressure - p 0, p pressures of O(1) and O() - Re Reynolds number=aW 0/ - (r, , s), (r, , s) coordinates and nondimensional coordinates - nonorthogonal unit vectors along the coordinate directions - r 0 radius of the projection of C - t unit tangent vector to C - V r, V , V s velocity components along the nonorthogonal directions - Vr, V, V s nondimensional velocity components along - W 0 average velocity in a straight annulus Greek symbols , curvature and nondimensional curvature of C - U, V, W lowest order terms for small in the velocity components along the orthogonal directions t - r, , s first approximations to V r , V, V s for small - =/=/ - kinematic viscosity - density of the fluid - , torsion and nondimensional torsion of C - , stream function and nondimensional stream function - nondimensional streamfunction for U, V - a inner radius of the annulus After this paper was accepted for publication, a paper entitled On the low-Reynolds number flow in a helical pipe, by C.Y. Wang, has appeared in J. Fluid. Mech., Vol 108, 1981, pp. 185–194. The results in Wangs paper are particular cases of this paper for =0, and are also contained in [9].  相似文献   

17.
A lossless wave supporting system is modelled by two linear partial differential equations with variable coefficients(x) and(x),x0, which represent the distributed parameters of the system. The problem of determining(x) and(x) from measurements performed at the boundaryx=0 is considered. It is shown that generally it is only possible to determine an impedance function (), where and depend on and. If some additional relationship is known between and, however, it may be possible to fully determine these parameters. This is the case if, for example, it is known that the wave speed is constant. The results are interpreted for sample cases from solid mechanics, fluid mechanics, acoustics, and electromagnetic theory, and solutions are given of specific problems. The paper generalizes work on determination of vocal tract shapes from acoustical measurements made at the lips.  相似文献   

18.
A system is described which allows the recreation of the three-dimensional motion and deformation of a single hydrogen bubble time-line in time and space. By digitally interfacing dualview video sequences of a bubble time-line with a computer-aided display system, the Lagrangian motion of the bubble-line can be displayed in any viewing perspective desired. The u and v velocity history of the bubble-line can be rapidly established and displayed for any spanwise location on the recreated pattern. The application of the system to the study of turbulent boundary layer structure in the near-wall region is demonstrated.List of Symbols Reynolds number based on momentum thickness u /v - t+ nondimensional time - u shear velocity - u local streamwise velocity, x-direction - u + nondimensional streamwise velocity - v local normal velocity, -direction - x + nondimensional coordinate in streamwise direction - + nondimensional coordinate normal to wall - + wire wire nondimensional location of hydrogen bubble-wire normal to wall - z + nondimensional spanwise coordinate - momentum thickness - v kinematic viscosity - W wall shear stress  相似文献   

19.
Certain steady yawed magnetogasdynamic flows, in which the magnetic field is everywhere parallel to the velocity field, are related to certain reduced three-dimensional compressible gas flows having zero magnetic field. Under a restriction, the reduced flows are linked, by certain reciprocal relations, to a four parameter class of plane gas flows. In the instance of constant entropy an approximation method is suggested for obtaining magnetogasdynamic flows from the corresponding plane, irrotational gasdynamic flows and examples are given.

Nomenclature

magnetogasdynamic flow variables H magnetic intensity - q fluid velocity - fluid density - p pressure - s entropy - Q t, H t component of q, H in the x–y plane - w , h component of q, H perpendicular to the x–y plane reduced gasdynamic flow factor of proportionality - q* fluid velocity - * fluid density - p* pressure - Q t * =u*î+v*, w* components of q* - l arbitrary constant - A v Alfvén speed - Q t, , p fluid velocity, density, pressure of the reciprocal gas dynamic flow - L, n, k, arbitrary constants - , velocity potential, stream function - angle made by Q t, Q t * , and V with the x-axis - adiabatic gas constant - a 2=(–1)/2 constant - M Mach number - W constant value of w* - E approximate constant value of g(p) - * modified potential function - modified velocity coordinate - +i - complex potential of the irrotational flow - B arbitrary constant - V incompressible flow velocity - V modified fluid velocity - X p, Y p points on the profile  相似文献   

20.
Zusammenfassung Die vorliegende Arbeit untersucht die Filmkondensation auf verschiedenen KörperoberflÄchen. Dabei wird sowohl der instationÄre Anlaufvorgang als auch der stationÄre Proze\ betrachtet. Die Ergebnisse für die Schichtdicke des abflie\enden Kondensates werden eingehend diskutiert. Ist die Schichtdicke als Funktion des Ortes und der Zeit bekannt, ist die Berechnung des kondensierenden bzw. abflie\enden Volumenstromes, sowie die Berechnung des lokalen bzw. für die Praxis bedeutungsvolleren globalen WÄrmeübergangs möglich.
Steady and unsteady process of film condensation on a flat plate, a vertical coin, a horizontal pipe and a sphere
This paper investigates film condensation on different surfaces of geometric bodies. In this connection the unsteady starting process and the steady process are considered. The results for the thickness of layer of the flowing-off condensate are discussed detailed. If the thickness of layer is given as a function of time and location the computation of the condensing, respective flowing-off volume stream and the computation of the local, respective global heat transfer is possible.

Bezeichnungen C Konstante - R Rohr- bzw. Kugelradius [m] - T Temperatur [K] - kondensierender Volumenstrom pro LÄngeneinheit [m2 s–1] - abflie\ender Volumenstrom pro LÄngeneinheit [m2 s–1] - kondensierender Volumenstrom [m3 s–1] - abflie\ender Volumenstrom [m3 s–1] - a Kegelachse - c spez. WÄrme der kondensierenden Flüssigkeit [J kg–1 K–1] - e ErzeugendenlÄnge des Kegels, an der die Randbedingung vorgeschrieben ist [m] - g Erdbeschleunigung [m s–2] - l Platten- bzw. KegellÄnge [m] - p Druck [Nm–2] - q WÄrmestromdichte [J m–2 s–1] - r VerdampfungswÄrme der Flüssigkeit [J kg–1] - t Zeit [s] - u örtliche Geschwindigkeit des Fluids [m s–1] - x, y kartesische Ortskoordinaten - r, Zylinder bzw. Kugelkoordinaten - WÄrmeübergangszahl [J m–2 s–1] - Neigungswinkel der Platte - öffnungswinkel des Kegels - Schichtdicke der kondensierten Flüssigkeit [m] - WÄrmeleitzahl der kondensierten Flüssigkeit [J m–1 s–1] - Dichte der kondensierten Flüssigkeit [kg m–3] - OberflÄchenspannung der kondensierten Flüssigkeit [Nm–1] - Schubspannung in der kondensierten Flüssigkeit [Nm–2] - v kinematische ZÄhigkeit [m2 s–1] - dynamische ZÄhigkeit [kg m–1 s–1] - Winkelkoordinate (Rohr, Kugel), bei der eine Randbe-dingung vorgeschieben ist Indizes g gasförmige Phase - m mittlere - s SÄttigungszustand des gasförmigen Mediums - w auf die OberflÄche der Wand (Platte, Kegel, Rohr,Kugel) bezogen - 0 Ursprung der jeweiligen Störungsausbreitung Dimensionslose Kennzahlen Nu Nu\elt-Zahl - Pr Prandtl-Zahl - Re Reynolds-Zahl Kurzfassung der bei Prof. Dr. W. Schneider, Institut für Strömungslehre und WÄrmeübertragung TU Wien, angefertigten Diplomarbeit  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号