首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
From 1998 to 2001, 115 h of acoustic recordings were made in the presence of the well-studied St. Lawrence population of blue whales, using a calibrated omnidirectional hydrophone [flat (+/- 3 dB) response from 5 to 800 Hz] suspended at 50 m depth from a surface isolation buoy. The primary field site for this study was the estuary region of the St. Lawrence River (Québec, Canada), with most recordings made between mid-August and late October. During the recordings, detailed field notes were taken on all cetaceans within sight. Characterization of the more than 1000 blue whale calls detected during this study revealed that the St. Lawrence repertoire is much more extensive than previously reported. Three infrasonic (<20 Hz) and three audible range (30-200 Hz) call types were detected, with much time/frequency variation seen within each type. Further variation is seen in the form of call segmentation, which appears (through examination of Lloyd's Mirror interference effects) to be controlled at least partially by the whales. Although St. Lawrence blue whale call characteristics are similar to those of the North Atlantic, comparisons of phrase composition and spacing among studies suggest the possibility of population dialects within the North Atlantic.  相似文献   

2.
The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods.  相似文献   

3.
Vocal characteristics of pygmy blue whales of the eastern Indian Ocean population were analyzed using data from a hydroacoustic station deployed off Cape Leeuwin in Western Australia as part of the Comprehensive Nuclear-Test-Ban Treaty monitoring network, from two acoustic observatories of the Australian Integrated Marine Observing System, and from individual sea noise loggers deployed in the Perth Canyon. These data have been collected from 2002 to 2010, inclusively. It is shown that the themes of pygmy blue whale songs consist of ether three or two repeating tonal sounds with harmonics. The most intense sound of the tonal theme was estimated to correspond to a source level of 179 ± 2 dB re 1 μPa at 1 m measured for 120 calls from seven different animals. Short-duration calls of impulsive downswept sound from pygmy blue whales were weaker with the source level estimated to vary between 168 to 176 dB. A gradual decrease in the call frequency with a mean rate estimated to be 0.35 ± 0.3 Hz/year was observed over nine years in the frequency of the third harmonic of tonal sound 2 in the whale song theme, which corresponds to a negative trend of about 0.12 Hz/year in the call fundamental frequency.  相似文献   

4.
Five species of large whales, including the blue (Balaenoptera musculus), fin (B. physalus), sei (B. borealis), humpback (Megaptera novaeangliae), and North Pacific right (Eubalaena japonica), were the target of commercial harvests in the Gulf of Alaska (GoA) during the 19th through mid-20th Centuries. Since this time, there have been a few summer time visual surveys for these species, but no overview of year-round use of these waters by endangered whales primarily because standard visual survey data are difficult and costly. From October 1999-May 2002, moored hydrophones were deployed in six locations in the GoA to record whale calls. Reception of calls from fin, humpback, and blue whales and an unknown source, called Watkins' whale, showed seasonal and geographic variation. Calls were detected more often during the winter than during the summer, suggesting that animals inhabit the GoA year-round. To estimate the distance at which species-diagnostic calls could be heard, parabolic equation propagation loss models for frequencies characteristic of each of each call type were run. Maximum detection ranges in the subarctic North Pacific ranged from 45 to 250 km among three species (fin, humpback, blue), although modeled detection ranges varied greatly with input parameters and choice of ambient noise level.  相似文献   

5.
Call source levels, transmission loss, and ambient noise levels were estimated for North Pacific right whale (Eubalaena japonica) up-calls recorded in the southeastern Bering Sea in autumn of 2000 and 2001. Distances to calling animals, needed to estimate source levels, were based on two independent techniques: (1) arrival-time differences on three or more hydrophones and (2) shallow-water dispersion of normal modes on a single receiver. Average root-mean-square (rms) call source levels estimated by the two techniques were 178 and 176 dB re 1 μPa at 1 m, respectively, over the up-call frequency band, which was determined per call and averaged 90 to 170 Hz. Peak-to-peak source levels were 14 to 22 dB greater than rms levels. Transmission loss was approximately 15?log(10)(range), intermediate between cylindrical and spherical spreading. Ambient ocean noise within the up-call band varied from 72 to 91 dB re 1 μPa(2)/Hz. Under average noise conditions, call spectrograms were detectable for whales at distances up to 100 km, but propagation and detection distance may vary depending on environmental parameters and anthropogenic noise. Obtaining distances to animals and acoustic detection range is a step toward using long-term passive acoustic recordings to estimate abundance for this critically endangered whale population.  相似文献   

6.
A sonobuoy array placed in the nearshore lead was used for locating bowhead whale sounds to determine if whales migrated past census stations beyond visual range and were uncounted. Based on a sample of 182 whale sounds (over 48 h) from closest point of approach (CPA) distances out to more than 10 km, 68% originated beyond 2 km (CPA), where only 1% of the 242 whales were sighted. No whales were sighted beyond 3 km during this time, but 53% of the located sounds originated that far and beyond. Thirty-seven other bowhead sounds over 15 h were distributed out to 6 km. Two tracked whales moved at average speeds of 1.5 and 1.8 kn. Maximum location error was 1%-25% in a sector of 120 degrees X 5-10 km, depending upon bearing and range. Most whale sounds were low-frequency moans, trumpeting roars, and repetitive sequences (songs) with peak spectrum source level up to 189 dB re: 1 microPa, 1 m. Lack of correlations between numbers of sounds and sighted whales precluded using bowhead sounds to count individuals or even to extrapolate ratios of unseen to observed whales.  相似文献   

7.
Sounds were recorded from bowhead whales migrating past Pt. Barrow, AK, to the Canadian Beaufort Sea. They mainly consisted of various low-frequency (25- to 900-Hz) moans and well-defined sound sequences organized into "song" (20-5000 Hz) recorded with our 2.46-km hydrophone array suspended from the ice. Songs were composed of up to 20 repeated phrases (mean, 10) which lasted up to 146 s (mean, 66.3). Several bowhead whales often were within acoustic range of the array at once, but usually only one sang at a time. Vocalizations exhibited diurnal peaks of occurrence (0600-0800, 1600-1800 h). Sounds which were located in the horizontal plane had peak source spectrum levels as follows--44 moans: 129-178 dB re: 1 microPa, 1 m (median, 159); 3 garglelike utterances: 152, 155, and 169 dB; 33 songs: 158-189 dB (median, 177), all presumably from different whales. Based on ambient noise levels, measured total propagation loss, and whale sound source levels, our detection of whale sounds was theoretically noise-limited beyond 2.5 km (moans) and beyond 10.7 km (songs), a model supported by actual localizations. This study showed that over much of the shallow Arctic and sub-Arctic waters, underwater communications of the bowhead whale would be limited to much shorter ranges than for other large whales in lower latitude, deep-water regions.  相似文献   

8.
In 2002 and 2003, tagged sperm whales (Physeter macrocephalus) were experimentally exposed to airgun pulses in the Gulf of Mexico, with the tags providing acoustic recordings at measured ranges and depths. Ray trace and parabolic equation (PE) models provided information about sound propagation paths and accurately predicted time of arrival differences between multipath arrivals. With adequate environmental information, a broadband acoustic PE model predicted the relative levels of multipath arrivals recorded on the tagged whales. However, lack of array source signature data limited modeling of absolute received levels. Airguns produce energy primarily below 250 Hz, with spectrum levels about 20-40 dB lower at 1 kHz. Some arrivals recorded near the surface in 2002 had energy predominantly above 500 Hz; a surface duct in the 2002 sound speed profile helps explain this effect, and the beampattern of the source array also indicates an increased proportion of high-frequency sound at near-horizontal launch angles. These findings indicate that airguns sometimes expose animals to measurable sound energy above 250 Hz, and demonstrate the influences of source and environmental parameters on characteristics of received airgun pulses. The study also illustrates that on-axis source levels and simple geometric spreading inadequately describe airgun pulse propagation and the extent of exposure zones.  相似文献   

9.
10.
Humpback whale songs were recorded on six widely spaced receivers of the Pacific Missile Range Facility (PMRF) hydrophone network near Hawaii during March of 2001. These recordings were used to test a new approach to localizing the whales that exploits the time-difference of arrival (time lag) of their calls as measured between receiver pairs in the PMRF network. The usual technique for estimating source position uses the intersection of hyperbolic curves of constant time lag, but a drawback of this approach is its assumption of a constant wave speed and straight-line propagation to associate acoustic travel time with range. In contrast to hyperbolic fixing, the algorithm described here uses an acoustic propagation model to account for waveguide and multipath effects when estimating travel time from hypothesized source positions. A comparison between predicted and measured time lags forms an ambiguity surface, or visual representation of the most probable whale position in a horizontal plane around the array. This is an important benefit because it allows for automated peak extraction to provide a location estimate. Examples of whale localizations using real and simulated data in algorithms of increasing complexity are provided.  相似文献   

11.
In the Southwestern Indian Ocean, one year of continuous acoustic data from calibrated hydrophones maintained by the International Monitoring System provided data on blue whale calls from two subspecies Antarctic and pygmy blue whales. Using an automatic detection method with a fixed threshold, both call types were detected and received levels were measured for each detected call. By using a parabolic equation loss model configured with the precise characteristics of the biological source, hydroacoustic station, and environment in the study area, distances at which calls could be detected were estimated. These methods were used to define the maximum detection range around each array of hydrophones and the influence of the seasonal variation of the ambient noise and sound velocity on the detection ranges. Results showed that detection ranges were critically dependent on the choice of the biological source’s input parameters, including frequency bandwidth and source level. Over the course of the year, detection distances were different for both subspecies; the pygmy blue whale seemed to be consistently closer to the station than the Antarctic blue whale. The distribution of the estimated distances confirmed the presence of both subspecies of blue whales near the Crozet Islands showing the importance of this sub-Antarctic area for these endangered species, especially during the austral summer feeding season.  相似文献   

12.
The acoustic calls of blue whales off California are described with visual observations of behavior and with acoustic tracking. Acoustic call data with corresponding position tracks are analyzed for five calling blue whales during one 100-min time period. Three of the five animals produced type A-B calls while two produced another call type which we refer to as type D. One of the animals producing the A-B call type was identified as male. Pauses in call production corresponded to visually observed breathing intervals. There was no apparent coordination between the calling whales. The average call source level was calculated to be 186 dB re: 1 muPa at 1 m over the 10-110-Hz band for the type B calls. On two separate days, female blue whales were observed to be silent during respective monitoring periods of 20 min and 1 h.  相似文献   

13.
An array of autonomous hydrophones moored in the eastern tropical Pacific was monitored for one year to examine the occurrence of whale calls in this region. Six hydrophones which recorded from 0-40 Hz were placed at 8 degrees N, 0 degree, and 8 degrees S along longitudes 95 degrees W and 110 degrees W. Seven types of sounds believed to be produced by large whales were detected. These sound types were categorized as either moan-type (4) or pulse-type (3) calls. Three of the moan-type calls, and probably the fourth, may be attributed to blue whales. The source(s) of the remaining calls is unknown. All of the call types studied showed seasonal and geographical variation. There appeared to be segregation between northern and southern hemispheres, such that call types were recorded primarily on the northern hydrophones in the northern winter and others recorded primarily on the southern hemisphere hydrophones in the southern winter. More calls and more call types were recorded on the eastern hydrophones than on the western hydrophones.  相似文献   

14.
Accurate parameter estimates relevant to the vocal behavior of marine mammals are needed to assess potential effects of anthropogenic sound exposure including how masking noise reduces the active space of sounds used for communication. Information about how these animals modify their vocal behavior in response to noise exposure is also needed for such assessment. Prior studies have reported variations in the source levels of killer whale sounds, and a more recent study reported that killer whales compensate for vessel masking noise by increasing their call amplitude. The objectives of the current study were to investigate the source levels of a variety of call types in southern resident killer whales while also considering background noise level as a likely factor related to call source level variability. The source levels of 763 discrete calls along with corresponding background noise were measured over three summer field seasons in the waters surrounding the San Juan Islands, WA. Both noise level and call type were significant factors on call source levels (1-40 kHz band, range of 135.0-175.7 dB(rms) re 1 [micro sign]Pa at 1 m). These factors should be considered in models that predict how anthropogenic masking noise reduces vocal communication space in marine mammals.  相似文献   

15.
Beginning in February 1999, an array of six autonomous hydrophones was moored near the Mid-Atlantic Ridge (35 degrees N-15 degrees N, 50 degrees W-33 degrees W). Two years of data were reviewed for whale vocalizations by visually examining spectrograms. Four distinct sounds were detected that are believed to be of biological origin: (1) a two-part low-frequency moan at roughly 18 Hz lasting 25 s which has previously been attributed to blue whales (Balaenoptera musculus); (2) series of short pulses approximately 18 s apart centered at 22 Hz, which are likely produced by fin whales (B. physalus); (3) series of short, pulsive sounds at 30 Hz and above and approximately 1 s apart that resemble sounds attributed to minke whales (B. acutorostrata); and (4) downswept, pulsive sounds above 30 Hz that are likely from baleen whales. Vocalizations were detected most often in the winter, and blue- and fin whale sounds were detected most often on the northern hydrophones. Sounds from seismic airguns were recorded frequently, particularly during summer, from locations over 3000 km from this array. Whales were detected by these hydrophones despite its location in a very remote part of the Atlantic Ocean that has traditionally been difficult to survey.  相似文献   

16.
Low frequency (<100 Hz) downsweep vocalizations were repeatedly recorded from ocean gliders east of Cape Cod, MA in May 2005. To identify the species responsible for this call, arrays of acoustic recorders were deployed in this same area during 2006 and 2007. 70 h of collocated visual observations at the center of each array were used to compare the localized occurrence of this call to the occurrence of three baleen whale species: right, humpback, and sei whales. The low frequency call was significantly associated only with the occurrence of sei whales. On average, the call swept from 82 to 34 Hz over 1.4 s and was most often produced as a single call, although pairs and (more rarely) triplets were occasionally detected. Individual calls comprising the pairs were localized to within tens of meters of one another and were more similar to one another than to contemporaneous calls by other whales, suggesting that paired calls may be produced by the same animal. A synthetic kernel was developed to facilitate automatic detection of this call using spectrogram-correlation methods. The optimal kernel missed 14% of calls, and of all the calls that were automatically detected, 15% were false positives.  相似文献   

17.
Data recorded during a temporary deployment of ocean bottom seismometers (OBSs) are used in this study to monitor the presence of fin whales around the array. In the summer of 2003, ten OBSs were placed 250 km from the NW coast of Iberia in the Galicia Margin, NE Atlantic Ocean for a period of one month. The recorded data set provided a large variety of signals, including fin whale vocalizations identified by their specific acoustic signature. The use of a dense array of seafloor receivers allowed investigation into the locations and tracks of the signal-generating whales using a seismological hypocentral location code. Individual pulses of different sequences have been chosen to study such tracks. Problems related to the correct identification of pulses, discrimination between direct and multiple arrivals, and the presence of more than one individual have been considered prior to location. Fin calls were concentrated in the last two weeks of the deployment and the locations were spread around the area covered by the array. These results illustrate that, besides its classical seismological aim, deployment of semipermanent seafloor seismic arrays can also provide valuable data for marine mammal behavior studies.  相似文献   

18.
Male fin whales, Balaenoptera physalus, produce a song consisting of 20?Hz notes at regularly spaced time intervals. Previous studies identified regional differences in fin whale internote intervals (INI), but seasonal changes within populations have not been closely examined. To understand the patterns of fin whale song in the western North Atlantic, the seasonal abundance and acoustic features of fin whale song are measured from two years of archival passive acoustic recordings at two representative locations: Massachusetts Bay and New York Bight. Fin whale 20?Hz notes are detected on 99% of recorded days. In both regions, INI varies significantly throughout the year as two distinct periods: a "short-INI" season in September-January (9.6?s) and a "long-INI" season in March-May (15.1?s). February and June-August are transitional-INI months, with higher variability. Note abundance decreases with increasing INI, where note abundance is significantly lower in April-August than in September-January. Short-INI and high note abundance correspond to the fin whale reproductive season. The temporal variability of INI may be a mechanism by which fin whale individuals encode and communicate a variety of behaviorally relevant information.  相似文献   

19.
Time averaged narrow-band noise near 27 Hz produced by vocalizations of many distant Antarctic blue whales intensifies seasonally from early February to late October in the ocean off Australia's South West. Spectral characteristics of long term patterns in this noise band were analyzed using ambient noise data collected at the Comprehensive Nuclear-Test-Ban Treaty hydroacoustic station off Cape Leeuwin, Western Australia over 2002-2010. Within 7 day averaged noise spectra derived from 4096-point FFT (~0.06 Hz frequency resolution), the -3-dB width of the spectral peak from the upper tone of Antarctic blue whale vocalization was about 0.5 Hz. The spectral frequency peak of this tonal call was regularly but not gradually decreasing over the 9 years of observation from ~27.7 Hz in 2002 to ~26.6 Hz in 2010. The average frequency peak steadily decreased at a greater rate within a season at 0.4-0.5 Hz/season but then in the next year recovered to approximately the mean value of the previous season. A regression analysis showed that the interannual decrease rate of the peak frequency of the upper tonal call was 0.135 ± 0.003 Hz/year over 2002-2010 (R(2) ≈ 0.99). Possible causes of such a decline in the whale vocalization frequency are considered.  相似文献   

20.
The surface active group (SAG) is the most commonly observed surface social behavior of North Atlantic right whales. Recordings were made from 52 SAGs in the Bay of Fundy, Canada between July and September, from 1999 to 2002. The call types recorded from these groups were similar to those described previously for Southern right whales (Eubalaena australis), with six major call types being termed scream, gunshot, blow, upcall, warble, and downcall. The percentage of total calls of each call type depended on the group size and composition. The most common call type recorded was the scream call. The scream calls were produced by the focal female in a SAG. Production of other sound types can be attributed to whales other than the focal female, with gunshot and upcalls produced by males, and warble calls produced by female calves. The source levels for these sounds range from 137 to 162 dB rms re 1 ,tPa-m for tonal calls and 174 to 192 dB rms for broadband gunshot sounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号