首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The impact of anthropogenic noise on marine mammals has been an area of increasing concern over the past two decades. Most low-frequency anthropogenic noise in the ocean comes from commercial shipping which has contributed to an increase in ocean background noise over the past 150 years. The long-term impacts of these changes on marine mammals are not well understood. This paper describes both short- and long-term behavioral changes in calls produced by the endangered North Atlantic right whale (Eubalaena glacialis) and South Atlantic right whale (Eubalaena australis) in the presence of increased low-frequency noise. Right whales produce calls with a higher average fundamental frequency and they call at a lower rate in high noise conditions, possibly in response to masking from low-frequency noise. The long-term changes have occurred within the known lifespan of individual whales, indicating that a behavioral change, rather than selective pressure, has resulted in the observed differences. This study provides evidence of a behavioral change in sound production of right whales that is correlated with increased noise levels and indicates that right whales may shift call frequency to compensate for increased band-limited background noise.  相似文献   

2.
Vocal communication within and between groups of individuals has been described extensively in birds and terrestrial mammals, however, little is known about how cetaceans utilize their sounds in their natural environment. Resident killer whales, Orcinus orca, live in highly stable matrilines and exhibit group-specific vocal dialects. Single call types cannot exclusively be associated with particular behaviors and calls are thought to function in group identification and intragroup communication. In the present study call usage of three closely related matrilines of the Northern resident community was compared in various intra- and intergroup contexts. In two out of the three matrilines significant changes in vocal behavior depending both on the presence and identity of accompanying whales were found. Most evidently, family-specific call subtypes, as well as aberrant and variable calls, were emitted at higher rates, whereas "low arousal" call types were used less in the presence of matrilines from different pods, subclans, or clans. Ways in which the observed changes may function both in intra- and intergroup communication.  相似文献   

3.
To date very little is still known about the acoustic behavior of Norwegian killer whales, in particular that of individual whales. In this study a unique opportunity was presented to document the sounds produced by five captured killer whales in the Vestfjord area, northern Norway. Individuals produced 14 discrete and 7 compound calls. Two call types were used both by individuals 16178 and 23365 suggesting that they may belong to the same pod. Comparisons with calls documented in Strager (1993) showed that none of the call types used by the captured individuals were present. The lack of these calls in the available literature suggests that call variability within individuals is likely to be large. This short note adds to our knowledge of the vocal repertoire of this population and demonstrates the need for further studies to provide behavioural context to these sounds.  相似文献   

4.
Bottlenose dolphins (Tursiops sp.) depend on frequency-modulated whistles for many aspects of their social behavior, including group cohesion and recognition of familiar individuals. Vocalization amplitude and frequency influences communication range and may be shaped by many ecological and physiological factors including energetic costs. Here, a calibrated GPS-synchronized hydrophone array was used to record the whistles of bottlenose dolphins in a tropical shallow-water environment with high ambient noise levels. Acoustic localization techniques were used to estimate the source levels and energy content of individual whistles. Bottlenose dolphins produced whistles with mean source levels of 146.7 ± 6.2 dB re. 1 μPa(RMS). These were lower than source levels estimated for a population inhabiting the quieter Moray Firth, indicating that dolphins do not necessarily compensate for the high noise levels found in noisy tropical habitats by increasing their source level. Combined with measured transmission loss and noise levels, these source levels provided estimated median communication ranges of 750 m and maximum communication ranges up to 5740 m. Whistles contained less than 17 mJ of acoustic energy, showing that the energetic cost of whistling is small compared to the high metabolic rate of these aquatic mammals, and unlikely to limit the vocal activity of toothed whales.  相似文献   

5.
Call source levels, transmission loss, and ambient noise levels were estimated for North Pacific right whale (Eubalaena japonica) up-calls recorded in the southeastern Bering Sea in autumn of 2000 and 2001. Distances to calling animals, needed to estimate source levels, were based on two independent techniques: (1) arrival-time differences on three or more hydrophones and (2) shallow-water dispersion of normal modes on a single receiver. Average root-mean-square (rms) call source levels estimated by the two techniques were 178 and 176 dB re 1 μPa at 1 m, respectively, over the up-call frequency band, which was determined per call and averaged 90 to 170 Hz. Peak-to-peak source levels were 14 to 22 dB greater than rms levels. Transmission loss was approximately 15?log(10)(range), intermediate between cylindrical and spherical spreading. Ambient ocean noise within the up-call band varied from 72 to 91 dB re 1 μPa(2)/Hz. Under average noise conditions, call spectrograms were detectable for whales at distances up to 100 km, but propagation and detection distance may vary depending on environmental parameters and anthropogenic noise. Obtaining distances to animals and acoustic detection range is a step toward using long-term passive acoustic recordings to estimate abundance for this critically endangered whale population.  相似文献   

6.
Blue (Balaenoptera musculus) and fin whales (B. physalus) produce high-intensity, low-frequency calls, which probably function for communication during mating and feeding. The source levels of blue and fin whale calls off the Western Antarctic Peninsula were calculated using recordings made with calibrated, bottom-moored hydrophones. Blue whales were located up to a range of 200 km using hyperbolic localization and time difference of arrival. The distance to fin whales, estimated using multipath arrivals of their calls, was up to 56 km. The error in range measurements was 3.8 km using hyperbolic localization, and 3.4 km using multipath arrivals. Both species produced high-intensity calls; the average blue whale call source level was 189+/-3 dB re:1 microPa-1 m over 25-29 Hz, and the average fin whale call source level was 189+/-4 dB re:1 microPa-1 m over 15-28 Hz. Blue and fin whale populations in the Southern Ocean have remained at low numbers for decades since they became protected; using source level and detection range from passive acoustic recordings can help in calculating the relative density of calling whales.  相似文献   

7.
The pattern of auditory masking derived from Gaussian noise is often cited and used to predict the detrimental effects of masking noise on marine mammals. However, environmental noise (both anthropogenic and natural) may not always be Gaussian distributed. Some noise sources are highly structured with complex amplitude fluctuations that extend across frequency regions, which are often termed comodulated noise. Recent evidence with bottlenose dolphins using comodulated noise demonstrated a significant release from masking compared to Gaussian maskers of the same bandwidth and pressure spectral density level, a result known as comodulation masking release. The present study demonstrates a pattern of masking where both temporally fluctuating comodulated noise and environmental noise produce lower masked thresholds compared to Gaussian noise of the same spectral density level and bandwidth. Furthermore, a threshold reduction or "masking release" occurred when the environmental noise bandwidth increased beyond a critical band. These results provide further evidence that conventional models of auditory masking using Gaussian maskers (i.e., the power spectrum model) do not fully describe the masking effects that occur in realistic environments.  相似文献   

8.
The surface active group (SAG) is the most commonly observed surface social behavior of North Atlantic right whales. Recordings were made from 52 SAGs in the Bay of Fundy, Canada between July and September, from 1999 to 2002. The call types recorded from these groups were similar to those described previously for Southern right whales (Eubalaena australis), with six major call types being termed scream, gunshot, blow, upcall, warble, and downcall. The percentage of total calls of each call type depended on the group size and composition. The most common call type recorded was the scream call. The scream calls were produced by the focal female in a SAG. Production of other sound types can be attributed to whales other than the focal female, with gunshot and upcalls produced by males, and warble calls produced by female calves. The source levels for these sounds range from 137 to 162 dB rms re 1 ,tPa-m for tonal calls and 174 to 192 dB rms for broadband gunshot sounds.  相似文献   

9.
An important aspect of hearing and acoustic communication is the ability to discriminate differences in sound level. Little is known about level discrimination in anuran amphibians (frogs and toads), for which vocal communication in noisy social environments is often critical for reproduction. This study used two-choice phonotaxis tests to investigate the ability of females of Cope's gray treefrog (Hyla chrysoscelis) to discriminate between two advertisement calls differing only in sound pressure level by 2, 4, or 6 dB. Tests were conducted in the presence and absence of chorus-shaped noise (73 dB) and using two different ranges of signal levels (73-79 dB and 79-85 dB). Females discriminated between two signals differing by as little as 2-4 dB. In contrast to expectations based on the "near miss to Weber's law" in birds and mammals, level discrimination was slightly better at the lower range of signal amplitudes, a finding consistent with earlier studies of frogs and insects. Realistic levels of background noise simulating a breeding chorus had no discernable effect on discrimination at the sound level differences tested in this study. These results have important implications for studies of auditory masking and signaling behavior in the contexts of anuran hearing and sound communication.  相似文献   

10.
The threatened resident beluga population of the St. Lawrence Estuary shares the Saguenay-St. Lawrence Marine Park with significant anthropogenic noise sources, including marine commercial traffic and a well-established, vessel-based whale-watching industry. Frequency-dependent (FD) weighting was used to approximate beluga hearing sensitivity to determine how noise exposure varied in time and space at six sites of high beluga summer residency. The relative contribution of each source to acoustic habitat degradation was estimated by measuring noise levels throughout the summer and noise signatures of typical vessel classes with respect to traffic volume and sound propagation characteristics. Rigid-hulled inflatable boats were the dominant noise source with respect to estimated beluga hearing sensitivity in the studied habitats due to their high occurrence and proximity, high correlation with site-specific FD-weighted sound levels, and the dominance of mid-frequencies (0.3-23 kHz) in their noise signatures. Median C-weighted sound pressure level (SPL(RMS)) had a range of 19 dB re 1 μPa between the noisiest and quietest sites. Broadband SPL(RMS) exceeded 120 dB re 1 μPa 8-32% of the time depending on the site. Impacts of these noise levels on St. Lawrence beluga will depend on exposure recurrence and individual responsiveness.  相似文献   

11.
The potential for seismic airgun "shots" to cause acoustic trauma in marine mammals is poorly understood. There are just two empirical measurements of temporary threshold shift (TTS) onset levels from airgun-like sounds in odontocetes. Considering these limited data, a model was developed examining the impact of individual variability and uncertainty on risk assessment of baleen whale TTS from seismic surveys. In each of 100 simulations: 10000 "whales" are assigned TTS onset levels accounting for: inter-individual variation; uncertainty over the population's mean; and uncertainty over weighting of odontocete data to obtain baleen whale onset levels. Randomly distributed whales are exposed to one seismic survey passage with cumulative exposure level calculated. In the base scenario, 29% of whales (5th/95th percentiles of 10%/62%) approached to 1-1.2 km range were exposed to levels sufficient for TTS onset. By comparison, no whales are at risk outside 0.6 km when uncertainty and variability are not considered. Potentially "exposure altering" parameters (movement, avoidance, surfacing, and effective quiet) were also simulated. Until more research refines model inputs, the results suggest a reasonable likelihood that whales at a kilometer or more from seismic surveys could potentially be susceptible to TTS and demonstrate that the large impact uncertainty and variability can have on risk assessment.  相似文献   

12.
The acoustic repertoire of killer whales (Orcinus orca) consists of pulsed calls and tonal sounds, called whistles. Although previous studies gave information on whistle parameters, no study has presented a detailed quantitative characterization of whistles from wild killer whales. Thus an interpretation of possible functions of whistles in killer whale underwater communication has been impossible so far. In this study acoustic parameters of whistles from groups of individually known killer whales were measured. Observations in the field indicate that whistles are close-range signals. The majority of whistles (90%) were tones with several harmonics with the main energy concentrated in the fundamental. The remainder were tones with enhanced second or higher harmonics and tones without harmonics. Whistles had an average bandwidth of 4.5 kHz, an average dominant frequency of 8.3 kHz, and an average duration of 1.8 s. The number of frequency modulations per whistle ranged between 0 and 71. The study indicates that whistles in wild killer whales serve a different function than whistles of other delphinids. Their structure makes whistles of killer whales suitable to function as close-range motivational sounds.  相似文献   

13.
Wind and rain generated ambient sound from the ocean surface represents the background baseline of ocean noise. Understanding these ambient sounds under different conditions will facilitate other scientific studies. For example, measurement of the processes producing the sound, assessment of sonar performance, and helping to understand the influence of anthropogenic generated noise on marine mammals. About 90 buoy-months of ocean ambient sound data have been collected using Acoustic Rain Gauges in different open-ocean locations in the Tropical Pacific Ocean. Distinct ambient sound spectra for various rainfall rates and wind speeds are identified through a series of discrimination processes. Five divisions of the sound spectra associated with different sound generating mechanisms can be predicted using wind speed and rainfall rate as input variables. The ambient sound data collected from the Intertropical Convergence Zone are used to construct the prediction algorithms, and are tested on the data from the Western Pacific Warm Pool. This physically based semi-empirical model predicts the ambient sound spectra (0.5-50 kHz) at rainfall rates from 2-200 mm/h and wind speeds from 2 to 14 m/s.  相似文献   

14.
The set of acoustic signals of White-Sea white whales comprises about 70 types of signals. Six of them occur most often and constitute 75% of the total number of signals produced by these animals. According to behavioral reactions, white whales distinguish each other by acoustic signals, which is also typical of other animal species and humans. To investigate this phenomenon, signals perceived as vowel-like sounds of speech, including sounds perceived as a “bleat,” were chosen A sample of 480 signals recorded in June and July, 2000, in the White Sea within a reproductive assemblage of white whales near the Large Solovetskii Island was studied. Signals were recorded on a digital data carrier (a SONY minidisk) in the frequency range of 0.06–20 kHz. The purpose of the study was to reveal the perceptive and acoustic features specific to individual animals. The study was carried out using the methods of structural analysis of vocal speech that are employed in lingual criminalistics to identify a speaking person. It was demonstrated that this approach allows one to group the signals by coincident perceptive and acoustic parameters with assigning individual attributes to single parameters. This provided an opportunity to separate conditionally about 40 different sources of acoustic signals according to the totality of coincidences, which corresponded to the number of white whales observed visually. Thus, the application of this method proves to be very promising for the acoustic identification of white whales and other marine mammals, this possibility being very important for biology.  相似文献   

15.
The majority of attention on the impact of anthropogenic noise on marine mammals has focused on low-frequency episodic activities. Persistent sources of mid-frequency noise pollution are less well studied. To address this data gap, the contribution of 25 physical, biological and anthropogenic factors to the ambient noise levels in the Wilmington, North Carolina Intracoastal Waterway were analyzed using a principal components analysis and least squares regression. The total number of recreational vessels passing through the waterway per hour is the factor that had the single greatest influence on environmental noise levels. During times of high boat traffic, anthropogenic noise is continuous rather than episodic, and occurs at frequencies that are biologically relevant to bottlenose dolphins. As a daily part of resident bottlenose dolphins' acoustic environment, recreational boating traffic may represent a chronic source of acoustic harassment.  相似文献   

16.
Several groups of mammals such as bats, dolphins and whales are known to produce ultrasonic signals which are used for navigation and hunting by means of echolocation, as well as for communication. In contrast, frogs and birds produce sounds during night- and day-time hours that are audible to humans; their sounds are so pervasive that together with those of insects, they are considered the primary sounds of nature. Here we show that an Old World frog (Amolops tormotus) and an oscine songbird (Abroscopus albogularis) living near noisy streams reliably produce acoustic signals that contain prominent ultrasonic harmonics. Our findings provide the first evidence that anurans and passerines are capable of generating tonal ultrasonic call components and should stimulate the quest for additional ultrasonic species.  相似文献   

17.
Vocal characteristics of pygmy blue whales of the eastern Indian Ocean population were analyzed using data from a hydroacoustic station deployed off Cape Leeuwin in Western Australia as part of the Comprehensive Nuclear-Test-Ban Treaty monitoring network, from two acoustic observatories of the Australian Integrated Marine Observing System, and from individual sea noise loggers deployed in the Perth Canyon. These data have been collected from 2002 to 2010, inclusively. It is shown that the themes of pygmy blue whale songs consist of ether three or two repeating tonal sounds with harmonics. The most intense sound of the tonal theme was estimated to correspond to a source level of 179 ± 2 dB re 1 μPa at 1 m measured for 120 calls from seven different animals. Short-duration calls of impulsive downswept sound from pygmy blue whales were weaker with the source level estimated to vary between 168 to 176 dB. A gradual decrease in the call frequency with a mean rate estimated to be 0.35 ± 0.3 Hz/year was observed over nine years in the frequency of the third harmonic of tonal sound 2 in the whale song theme, which corresponds to a negative trend of about 0.12 Hz/year in the call fundamental frequency.  相似文献   

18.
19.
Many vocalizations produced by Weddell seals (Leptonychotes weddellii) are made up of repeated individual distinct sounds (elements). Patterning of multiple element calls was examined during the breeding season at Casey and Davis, Antarctica. Element and interval durations were measured from 405 calls all > 3 elements in length. The duration of the calls (22+/-16.6 s) did not seem to vary with an increasing number of elements (F4,404=1.83,p = 0.122) because element and interval durations decreased as the number of elements within a call increased. Underwater vocalizations showed seven distinct timing patterns of increasing, decreasing, or constant element and interval durations throughout the calls. One call type occurred with six rhythm patterns, although the majority exhibited only two rhythms. Some call types also displayed steady frequency changes as they progressed. Weddell seal multiple element calls are rhythmically repeated and thus the durations of the elements and intervals within a call occur in a regular manner. Rhythmical repetition used during vocal communication likely enhances the probability of a call being detected and has important implications for the extent to which the seals can successfully transmit information over long distances and during times of high level background noise.  相似文献   

20.
Acquisition of acoustic data from ocean observatories is expected to play a key role for the long-term monitoring of marine mammals and anthropogenic noise. It typically requires processing of a large volume of acoustic data and it must rely on automated identification of signals. We present an algorithmic framework for the detection of short tonal sounds (e.g. cetacean calls, anthropogenic pings) intended to act as a first stage in a system for the automated real-time detection, classification, and localisation of acoustic sources. The algorithm was validated under a diversity of scenarios expected at ocean observatories. Using simulated signals that emulate a variety of cetacean call-types, perfect identification of signal position was obtained for signal to noise ratios of ?15 to ?5 dB, depending on the signal-type. Separation of real-world data segments with short tonal sounds (mainly cetacean calls) from segments with other sounds or noise resulted in Area Under the ROC Curve values between 0.96 and 0.98. The algorithm can be used to automatically identify cetacean calls and anthropogenic short tonal sounds much faster than in real-time, thereby reducing the burden put on data transmission, storage, or processing by classification and localisation algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号