首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zeolite LTA nanoparticles are prepared by laser-induced fragmentation of zeolite LTA microparticles using a pulsed laser. Zeolite nanoparticle formation is attributed to absorption of the laser at impurities or defects within the zeolite microcrystal generating thermoelastic stress that mechanically fractures the microparticle into smaller nanoparticle fragments. Experimentally, it is found that nanoparticles have a wide size and morphology distribution. Large nanoparticles (>200 nm) are typically irregularly shaped crystals of zeolite LTA, whereas small nanoparticles (<50 nm) tend to be spherical, dense, and amorphous, indicative of destruction of the original LTA crystal structure. Results of the fragmentation versus laser parameters show that shorter laser wavelengths are more efficient at producing zeolite nanoparticles, which is explained based on a larger cross section for optical absorption in the zeolite crystal. Increasing the laser energy density irradiating the sample was found to be a trade-off between increasing the amount of fragmentation and increasing the amount of structural damage to the zeolite crystal. It is suggested that in the presence of strongly absorbing defects, plasma formation is induced resulting in dramatically higher temperatures. On the basis of these results it is suggested the optimal laser processing conditions are 355 nm and 10 mJ/pulse laser energy for our LTA samples.  相似文献   

2.
Morphology development during isothermal crystallization in equal molecular weight isotactic polypropylene (iPP) and atactic polypropylene (aPP) blends was studied with time‐resolved simultaneous small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray scattering methods with synchrotron radiation. The final long period obtained after crystallization at 115 °C was nearly independent of blend composition up to 50 wt % aPP but showed an increase in the 80 wt % aPP blend. At a high crystallization temperature (137.5 °C), the increase in the final long period with aPP content was significant, and the evolution of iPP crystallinity was also affected. However, at low crystallization temperatures, the additive decrease of the crystallinity and the constant melting point with increasing aPP content suggest that the crystallizability and crystal morphology of iPP is not a strong function of aPP. The iPP/aPP blends showed a strong low‐angle SAXS upturn as a function of composition, which suggests the segregation of aPP on size scales larger than the lamellar spacing. A detailed analysis of the SAXS patterns indicates that aPP disrupts the ordering within the lamellar stacking. The results are generally consistent with predominantly interfibrillar incorporation of the aPP diluent within the microstructure, with only modest interlamellar incorporation dependent on the crystallization temperature. The findings can be attributed to the partial miscibility/mixing of the aPP and iPP components in the blend before crystallization, depending on the crystallization undercooling. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2580–2590, 2000  相似文献   

3.
用高效NaY沸石导向剂快速合成A型沸石   总被引:1,自引:1,他引:1  
提出了应用高效NaY沸石导向剂快速合成A型沸石的新方法. 在合成过程中, NaY沸石导向剂提供了全部硅源(无需另加硅源). 与用水玻璃提供硅源的合成方法相比, 该法晶化速度快, 合成温度低, 并可在低碱度条件下合成超细A型沸石. 29Si NMR表征和UV Raman研究表明, 高效NaY沸石导向剂中含有大量的六元环等低分子量硅铝酸根前驱体, 它们有利于A型沸石成核与晶体生长.  相似文献   

4.
Synchrotron small angle X-ray scattering (SAXS) was used to characterize silicalite-1 zeolite crystallization from TEOS/TPAOH/water clear sol. SAXS patterns were recorded over a broad range of length scales, enabling the simultaneous monitoring of nanoparticles and crystals occurring at various stages of the synthesis. A simple two-population model accurately described the patterns. Nanoparticles were modeled by polydisperse core-shell spheres and crystals by monodisperse oblate ellipsoids. These models were consistent with TEM images. The SAXS results, in conjunction with in situ light scattering, showed that nucleation of crystals occurred in a short period of time. Crystals were uniform in size and shape and became increasingly anisotropic during growth. In the presence of nanoparticles, crystal growth was fast. During crystal growth, the number of nanoparticles decreased gradually but their size was constant. These observations suggested that the nanoparticles were growth units in an aggregative crystal growth mechanism. Crystals grown in the presence of nanoparticles developed a faceted habit and intergrowths. In the final stages of growth, nanoparticles were depleted. Concurrently, the crystal growth rate decreased significantly.  相似文献   

5.
Linde Type A (LTA) zeolites have been synthesized in the current study by simple sol–gel technique. The crystal growth has been controlled by varying the hydrogel synthesis time and annealing temperature. The resulting products obtained at various crystallization times and temperatures have been studied using X-ray powder diffraction (XRD) method, High resolution transmission electron microscopy images, scanning electron microscopy (SEM) micrographs, energy dispersive study and Brunauer–Emmett–Teller (BET) analysis. The TEM images of the final LTA zeolite annealed at 500 °C revealed the formation of cubic structure. XRD analysis revealed that the crystallinity improved with annealing. BET analysis revealed that the synthesized LTA is a well crystallized 4A zeolite. LTA zeolites were dispersed in poly ethylene glycol in the ratio 3:100 and 5:100 and coated on porous alumina beads for the formation of membrane. The SEM images revealed excellent formation of fine structure LTA zeolite membrane with uniform coating. The membrane consisted of a top layer with thickness of 1.14–2.0 µm. Crystals in the top layer showed cubic morphology and amorphous phase was observed at the grain boundaries present between LTA zeolite and alumina substrate.  相似文献   

6.
The crystallization kinetics and morphology of PEN/PET copolyesters were investigated using differential scanning calorimetry (DSC), time‐resolved small‐angle X‐ray scattering (TR‐SAXS), and transmission electron microscopy (TEM). The Avrami exponents obtained using DSC were approximately 3 for homo PEN and 4 for all the copolyesters. The 3‐parameter Avrami model was successfully fitted to the invariants with respect to the time obtained from TR‐SAXS, and the exponent values were similar to those obtained from DSC. Moreover, the Avrami rate constants obtained from TR‐SAXS showed marked temperature‐sensitive decreases in all samples, like those obtained from DSC. This indicates that not only could changes in morphological parameters be obtained from the analysis of TR‐SAXS data but also crystallization kinetics. The changes in the morphological parameters determined from the SAXS data indicate that the minor components, dimethyl terephthalate (DMT) segments, are rejected into the amorphous phase during crystallization. In the TEM study, copolyesters crystallized at temperature above 240 °C grew into both the α‐ and β‐form, although 240 °C is the optimum condition for the β‐form crystal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 805–816, 2005  相似文献   

7.
For the first time, quantitative analyses of the crystallization kinetics, surface free energy of chain folding, and morphology in phenolic/poly(ϵ-caprolactone) (PCL) binary blends have been studied. The spherulite growth rate and the overall crystallization rate depend on the crystallization temperature and PCL content in the blend. In addition, the crystallization and melting temperatures of the PCL phase decrease with an increase in the phenolic content. An Avrami analysis shows that the addition of phenolic to PCL results in a decrease in the overall crystallization rate of the PCL phase. The presence of an amorphous phenolic phase results in a reduction in the rate of the spherulite growth of PCL. The surface free energy of folding increases with increasing phenolic content, and the crystal thickness of a phenolic/PCL blend, according to small-angle X-ray scattering (SAXS), is greater than that of pure PCL because of the increase in the surface free energy of chain folding and the decrease in the degree of supercooling. The observed domain size of the crystalline/amorphous phase (5.9 nm) from SAXS is also consistent with that from solid-state NMR (3–20 nm). All these results indicate that the crystallization ability of PCL decreases with increasing phenolic content in the blends. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 117–128, 2004  相似文献   

8.
The crystallization behavior of isotactic propylene‐1‐hexene (PH) random copolymer having 5.7% mole fraction of hexene content was investigated using simultaneous time‐resolved small‐angle X‐ray scattering (SAXS) and wide‐angle X‐ray diffraction (WAXD) techniques. For this copolymer, the hexene component cannot be incorporated into the unit cell structure of isotactic polypropylene (iPP). Only α‐phase crystal form of iPP was observed when samples were melt crystallized at temperatures of 40 °C, 60 °C, 80 °C, and 100 °C. Comprehensive analysis of SAXS and WAXD profiles indicated that the crystalline morphology is correlated with crystallization temperature. At high temperatures (e.g., 100 °C) the dominant morphology is the lamellar structure; while at low temperatures (e.g., 40 °C) only highly disordered small crystal blocks can be formed. These morphologies are kinetically controlled. Under a small degree of supercooling (the corresponding iPP crystallization rate is slow), a segmental segregation between iPP and hexene components probably takes place, leading to the formation of iPP lamellar crystals with a higher degree of order. In contrast, under a large degree of supercooling (the corresponding iPP crystallization rate is fast), defective small crystal blocks are favored due to the large thermodynamic driving force and low chain mobility. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 26–32, 2010  相似文献   

9.
The structure and thermal behavior of cold-crystallized poly(trimethylene terephthalate) (PTT) are revealed in detail by DSC, AFM, TEM, and WAXD as well as in situ FTIR and SAXS techniques. There is no effect of crystallization temperature and initial state on the crystal modification, yet the morphology is strongly affected by these two factors. First, the small rod-like lamellae for PTT are obtained during the cold crystallization instead of the spherulites formed in the melt crystallization. Second, the edge-on lamellar orientation in thin films is identified during the cold crystallization. The thickness and the lateral width of rod-like lamellae get larger and larger with increasing crystallization temperature. Thin lamellar crystals assemble randomly when the cold-crystallization temperature is lower, while lamellar stacks composed of thicker lamellae are observed when the PTT was annealed at elevated temperature. Moreover, for the cold-crystallized PTT, the final melting temperature does not vary with the crystallization temperature. This phenomenon is explained by the structural improvement during the heating process. For the cold-crystallized PTT sample at lower temperature, three transitions occur when it is heated again: the relaxation of the rigid amorphous phase, the reorganization of molecules in the intermediate phase, and then the melt–recrystallization behavior. Those transitions finally lead to thicker lamellae besides a higher crystallinity before the final fusion. Therefore, the final melting peak of these lamellae is at the same temperature.  相似文献   

10.
Crystallization and melting behavior are studied by small-angle X-ray scattering (SAXS) for a series of recently synthesized monotropic liquid crystalline polycarbonates based on α-methyl stilbene mesogen and methylene flexible spacer. The one-dimensional electron density correlation function is used to obtain long period, crystal thickness, and linear crystallinity from the Lorentz-corrected SAXS intensity. Changes in these parameters during nonisothermal crystallization and melting are explained by a model of dual crystal populations. The primary crystals form first using the liquid crystalline phase as crystal nuclei, while smaller and less perfect crystals form later from the isotropic phase at low temperature. The results of the real-time SAXS study of isothermal crystallization also support the view that the nematic phase serves as crystal nuclei for fast crystallization. An odd-even effect in crystal thickness and linear crystallinity is observed in all the SAXS experiments mentioned above. The results of this study and our complementary wide-angle X-ray scattering (WAXS) investigation show clearly that the difference in the position of the neighboring carbonate dipoles on a chain affects structural organization both at the unit cell level and at the level of the crystal in these monotropic LCPs. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
The kinetics of isothermal crystallization of various polymers was investigated by light depolarization technique (LDT) using the new setup with direct registration of depolarization ratio. Experimental data were analyzed using new method proposed by Ziabicki who shown that degree of crystallinity is a non-linear function of degree of depolarization, crystal thickness, and its birefringence. Other experimental methods were involved providing supplementary information on crystal thickness (SAXS) and allowing comparison of crystallization kinetics (WAXS, DSC). The advantage of LDT relies on high sampling rate allowing on-line measurements and lack of inertia effects that exist in other methods like calorimetry. The limitations of the applicability of the method are discussed. The method needs supplementary information not only on crystal thickness but also on variable optical birefringence of real crystals. Our results show that LDT can be used in a simple way for investigation of crystallization kinetics at relatively high temperatures, providing large and perfect crystals. In such a case it is sufficient to use crystal intrinsic birefringence and final crystal thickness typical at particular temperature of crystallization. On the other hand, depolarization ratio combined with measurements by other methods (crystallinity and crystal thickness) can be used for estimation of crystal birefringence.  相似文献   

12.
PP/clay composites with different dispersions, namely, exfoliated dispersion, intercalated dispersion and agglomerates and particle-like dispersion, were prepared by direct melt intercalation or compounding. The effect of clay dispersion on the crystallization and morphology of PP was investigated via PLM, SAXS and DSC. Experimental results show that exfoliated clay layers are much more efficient than intercalated clay and agglomerates of clay in serving as nucleation agent due to the nano-scale dispersion of clay, resulting in a dramatic decrease in crystal size (lamellar thickness and spherulites) and an increase of crystallization temperature and crystallization rate. On the other hand, a decrease of melting temperature and crystallinity was also observed in PP/clay composites with exfoliated dispersion, due to the strong interaction between PP and clay. Compared with exfoliated clay layers, the intercalated clay layers have a less important effect on the crystallization and crystal morphology. No effect is seen for samples with agglomerates and particle-like dispersion, in regard to melting temperature, crystallization temperature, crystal thickness and crystallinity.  相似文献   

13.
Small‐angle X‐ray scattering (SAXS) pattern and tensile stress during relaxation of stretched rubber vulcanizates (synthetic polyisoprene) were measured simultaneously at room temperature and at 0 °C. The samples were quickly stretched to the prefixed strain and then allowed to relax for 1 h. In every SAXS pattern, the intensity distribution was elongated along the equator, indicating the formation of structures elongated in the stretching direction. The so‐called two‐spots pattern corresponding to the long period of stacked lamellar crystals did not appear even when the critical strain to induce crystallization was exceeded. On the other hand, even below the critical strain, additional development of equatorial streaks was detected in the differential SAXS patterns. This result suggests the growth of the density fluctuation elongated in the stretching direction, which is not directly related to strain‐induced crystallization. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

14.
We present an in situ small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) and quick‐scanning extended X‐ray absorption fine‐structure (QEXAFS) spectroscopy study on the crystallization of the metal–organic framework ZIF‐7. In combination with DFT calculations, the self‐assembly and growth of ZIF‐7 microrods together with the chemical function of the crystal growth modulator (diethylamine) are revealed at all relevant length scales, from the atomic to the full crystal size.  相似文献   

15.
The hydrothermal crystallization of CoAPO-5 molecular sieves has been studied using time-resolved in-situ SAXS/WAXS, UV-vis, Raman, and XAS. Data collected during heating to 180 degrees C allowed the observation of different steps occurring during the transformation of the amorphous gel into a crystalline material from a macroscopic and atomic perspective. Raman spectroscopy detected the initial formation of Al-O-P bonds, whereas SAXS showed that these gel particles had a broad size distribution ranging from ca. 7 to 20 nm before crystallization began. WAXS showed that this crystallization was sharp and occurred at around 160 degrees C. Analysis of the crystallization kinetics suggested a one-dimensional growth process. XAS showed that Co(2+) transformed via a two-stage process during heating involving (i) a gradual transformation of octahedral coordination into tetrahedral coordination before the appearance of Bragg peaks corresponding to AFI, suggesting progressive incorporation of Co(2+) into the poorly ordered Al-O-P network up to ca. 150 degrees C, and (ii) a rapid transformation of remaining octahedral Co(2+) at the onset of crystallization. Co(2+) was observed to retard crystallization of AFI but provided valuable information regarding the synthesis process by acting as an internal probe. A three-stage, one-dimensional crystallization mechanism is proposed: (i) an initial reaction between aluminum and phosphate units forming a primary amorphous phase, (ii) progressive condensation of linear Al-O-P chains forming a poorly ordered structure separated by template molecules up to ca. 155 degrees C, and (iii) rapid internal reorganization of the aluminophosphate network leading to crystallization of the AFI crystal structure.  相似文献   

16.
Crystal and phase morphologies and structures determined by self-organization of crystalline-amorphous diblockcopolymers, crystallization of the crystallizable blocks, and vitrification of the amorphous blocks are reviewed through asystematic study on a series of poly(ethylene oxide)-b-polystyrene (PEO-b-PS) diblock copolymers. On the base ofcompetitions among these three processes, molecular and supramolecular ordering in confined environments can beinvestigated. In a concentration-fluctuation-induced disordered (D_(CF)) diblock copolymer, the competition between crystalli-zation of the PEO blocks and vitrification of the PS blocks is momtored by time-resolved simultaneous small angle X-rayscattering (SAXS) and wide angle X-ray diffraction (WAXD) techniques. In the case of T_c相似文献   

17.
Colloidal silicalite‐1 zeolite was crystallized from a concentrated clear sol prepared from tetraethylorthosilicate (TEOS) and aqueous tetrapropylammonium hydroxide (TPAOH) solution at 95 °C. The silicate speciation was monitored by using dynamic light scattering (DLS), synchrotron small‐angle X‐ray scattering (SAXS), and quantitative liquid‐state 29Si NMR spectroscopy. The silicon atoms were present in dissolved oligomers, two discrete nanoparticle populations approximately 2 and 6 nm in size, and crystals. On the basis of new insight into the evolution of the different nanoparticle populations and of the silicate connectivity in the nanoparticles, a refined crystallization mechanism was derived. Upon combining the reagents, different types of nanoparticles (ca. 2 nm) are formed. A fraction of these nanoparticles with the least condensed silicate structure does not participate in the crystallization process. After completion of the crystallization, they represent the residual silicon atoms. Nanoparticles with a more condensed silicate network grow until approximately 6 nm and evolve into building blocks for nucleation and growth of the silicalite‐1 crystals. The silicate network connectivity of nanoparticles suitable for nucleation and growth increasingly resembles that of the final zeolite. This new insight into the two classes of nanoparticles will be useful to tune the syntheses of silicalite‐1 for maximum yield.  相似文献   

18.
The crystallization process from supercooled melt results in the formation of nanosize nuclei in the earlier stage (induction period) through subsequent attachment or detachment of repeating unit to nuclei. The size distribution of nucleus f(N(j),t) in the induction period of nucleation process from the melts has not been experimentally confirmed yet by direct observation. The reason is that the number density of nuclei nu is too small to be detected experimentally. In our previous work, we showed the direct evidence of nucleation experimentally by means of small angle x-ray scattering (SAXS) technique. Further we have succeeded to observe the nucleation and f(N(j),t) of polymer crystallization from the melts by SAXS using synchrotron radiation. We increased nu by adding a nucleating agent to a polymer (polyethylene). The time evolution of f(N(j),t) was observed for the first time.  相似文献   

19.
The deformation behavior of homogeneous ethylene‐1‐octene copolymers was investigated as a function of the crystallinity and the crystal size and perfection, respectively, by wide‐ and small‐angle X‐ray scattering using synchrotron radiation. The crystallinity and the crystal size and perfection, respectively, are controlled by the copolymer composition and the condition of melt crystallization. The deformation includes rotation of crystals, followed by plastic deformation and complete melting of the initial crystal population, and final formation of microfibrils. The process of rotation, plastic deformation, and melting of crystals of the initial structure is completed at lower strain if the size and perfection of the crystals, respectively, decrease, that is, if crystals thermally melt at lower temperature. The kinetics of the fibrillation of the initial structure seems independent of the crystal symmetry, that is, rotation and melting of pseudohexagonal and orthorhombic polyethylene crystals (as evident in low‐crystalline specimens) are similar. The structure of the microfibrils, before and after stress release, is almost independent of the condition of prior melt crystallization, which supports the notion of complete melting of the initial crystal population. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1919–1930, 2002  相似文献   

20.
Boehmite (AlOOH) nanoparticles have been synthesized in subcritical (300 bar, 350 °C) and supercritical (300 bar, 400 °C) water. The formation and growth of AlOOH nanoparticles were studied in situ by small‐ and wide‐angle X‐ray scattering (SAXS and WAXS) using 80 keV synchrotron radiation. The SAXS/WAXS data were measured simultaneously with a time resolution greater than 10 s and revealed the initial nucleation of amorphous particles takes place within 10 s with subsequent crystallization after 30 s. No diffraction signals were observed from Al(OH)3 within the time resolution of the experiment, which shows that the dehydration step of the reaction is fast and the hydrolysis step rate‐determining. The sizes of the crystalline particles were determined as a function of time. The overall size evolution patterns are similar in sub‐ and supercritical water, but the growth is faster and the final particle size larger under supercritical conditions. After approximately 5 min, the rate of particle growth decreases in both sub‐ and supercritical water. Heating of the boehmite nanoparticle suspension allowed an in situ X‐ray investigation of the phase transformation of boehmite to aluminium oxide. Under the wet conditions used in this work, the transition starts at 530 °C and gives a two‐phase product of hydrated and non‐hydrated aluminium oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号