首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aggregation properties of three dicationic quaternary ammonium gemini surfactants with the same structure, except the spacer group, diethyl ether, six methylene, and p-xylyl, have been studied using electrical conductivity and fluorescence. The critical micelle concentration (cmc) and the micelle aggregation number (N) were determined, and the micropolarity and the microviscosity of the micelle were characterized. The micelle ionization degree (alpha) was obtained by a combination of the electrical conductivity data and the micelle aggregation number. Furthermore, the Gibbs free energy of micellization (deltaGmic) was studied. These results have shown that the nature of the spacer has an important effect on the aggregation properties of gemini surfactants in an aqueous solution. A hydrophilic, flexible spacer prompts micelle formation, which leads to a smaller cmc, smaller alpha, larger N, and more negative deltaGmic. Meanwhile, the microviscosity study indicates that the gemini surfactant with a hydrophilic, flexible spacer forms a more closely packed micelle structure than the one with a hydrophobic, rigid spacer.  相似文献   

2.
郑玉婴  赵剑曦  郑欧  游毅  邱羽 《化学学报》2001,59(5):690-695
测定了Cemini阳离子表面活性剂C~m-----s-----C~m·2Br(m=8,10,12,;s=2,6及m=12;s=3,4)水溶液的电导,从电导(k)~表面活性剂浓度(c)曲线的转折点可求得临界胶团浓度cmc.实验发现,Gemini阳离子表面活性剂的胶团化倾向明显强于其“单体分子”)即单离子头基单烷烃链表面活性剂)。根据质量作用模型计算了胶经过程的吉布氏能、焓和熵的改变。结果表明Gemini表面活性剂聚集机理和其对应的“单体分子”类似,主要来自熵驱动。所有的焓/熵补偿图均呈现良好的线性关系,补偿直线在γ轴的截距随s减小而变小,这意味着具有较小s的Gemini表面活性剂倾向于生成稳定的胶团。  相似文献   

3.
This paper presents a series of semi-fluorinated gemini surfactants with two bromo pendant groups. It reviews the effect of the number of methylene units in the spacer group between the two hydrophilic quaternary ammonium heads. Critical micelle concentration (cmc) and free energy of micellization (ΔG(M)(0)) of the title surfactants, in aqueous solution, have been investigated as a function of the number n of carbon atoms in the hydrocarbon spacer. We have pointed out a different behaviour as compared to Gemini hydrocarbon homologues. In the present study, when the number of methylene units (n) in the spacer increases, the cmc first decreases and reaches an optimum for (n=6), then it increases linearly from n≥6. Variations of cmc have been interpreted in terms of conformation changes of the surfactant ion and progressive penetration of the alkyl chain spacer in the micelle hydrophobic core. In this series, the increase of the hydrophobicity seems not to favour the micellisation process as expected, probably impacted by the mutual phobicity of the perfluorinated tails and the hydrocarbon spacer. A minimum is reached for a spacer with six methylene units which seems to be the optimal conformation. The free energy of micellization (ΔG(M)(0)) confirm this tendency.  相似文献   

4.
Dimeric (gemini) surfactants are made up of two amphiphilic moieties connected at the level of, or very close to, the head groups by a spacer group of varying nature: hydrophilic or hydrophobic, rigid or flexible. These surfactants represent a new class of surfactants that is finding its way into surfactant-based formulations. The nature of the spacer group (length, flexibility, chemical structure) has been shown to be of the utmost importance in determining the solution properties of aqueous dimeric surfactants. This paper reviews the effect of the nature of the spacer on some of these properties. The behavior of dimeric surfactants in the submicellar range of concentration, at interfaces, in dilute solution (solubility in water, Krafft temperature, critical micellization concentration, thermodynamics of micelle formation, micelle ionization degree, size, polydispersity, micropolarity and microviscosity, microstructure and rheology of the solutions, solubilization, micelle dynamics, and interaction with polymers) and in concentrated solution (phase behavior) are successively reviewed. Selected results concerning trimeric and tetrameric surfactants are also reviewed.  相似文献   

5.
A series of partially fluorinated cationic gemini surfactants and their corresponding monomeric surfactants have been studied by isothermal titration microcalorimetry. The critical micelle concentration (CMC) and enthalpy of micellization (DeltaH(mic)) were obtained from calorimetric curves. The CMCs of the gemini surfactants are much lower than those of the corresponding monomeric surfactants and decrease with an increase in the number of fluorine atoms on the hydrophobic chain. The micellization of partially fluorinated cationic gemini surfactants is much more exothermic than that of the corresponding monomeric surfactants. Because of the incompatibility of hydrocarbon spacer and partially fluorinated chain, DeltaH(mic) values of the surfactants with a C6 spacer are more negative than those of the surfactants with a C12 spacer. The variations in the architecture of the fluorocarbon chain segments may be the reason of the irregularities in the change of DeltaH(mic) for the gemini surfactants. Moreover, the contribution of the enthalpy generally increases with an increase in the number of fluorine atoms.  相似文献   

6.
Dimeric or gemini surfactants are novel surfactants that are finding a great deal of discussion in the academic and industrial arena. They consist of two hydrophobic chains and two polar head groups covalently linked by a spacer. Data on critical micelle concentration (cmc) and degree of counterion dissociation (α) are reported on bis-cationic C16H33N+(CH3)2–(CH2)s–N+(CH3)2C16H33, 2Br, referred to as 16-s-16, for spacer lengths s=4, 5, 6 in aqueous and in polar nonaqueous (1-propanol, 2-methoxyethanol or methyl cellosolve, dimethyl sulfoxide, acetonitrile)-water-mixed solvents. The behavior is compared with conventional monomeric surfactant cetyltrimethylammonium bromide (CTAB). Thermodynamic parameters are obtained from the temperature dependence of the cmc values. It is observed that micellization tendency of the surfactants decreases in the presence of polar nonaqueous solvents. However, detailed studies with dimethylsulfoxide (DMSO) show that the geminis nearly outclass the micellization-arresting property of this solvent. Also, within geminis, higher spacer length is found suitable for showing micellization even with high DMSO content (50% v/v). The implications of these results of gemini micellization may be useful in micellar catalysis in polar nonaqueous solvents.  相似文献   

7.
Mixed micelle formation of binary cationic gemini (12-s-12, s=4, 6) and zwitterionic (N-dodecyl-N,N-dimethylglycine, EBB) surfactants has been investigated by measuring the surface tension of aqueous solution as a function of total concentration at various pH values from acidic to basic, under conditions of 298.15 K and atmospheric pressure. The results were analyzed by applying regular solution theory (RST), and Motomura's theory, which allows for the calculation of the excess Gibbs energy of micellization purely on the basis of thermodynamic equations. The synergistic interactions of all the investigated cationic gemini + zwitterionic surfactants mixtures were found to be dependent upon the pH of the solution and the length of hydrophobic spacer of gemini surfactant. The evaluated excess Gibbs free energy is negative for all the systems.  相似文献   

8.
聚氧乙烯-聚氧丙烯(PEO-PPO)嵌段聚醚是一类非离子型高分子表面活性剂,其结构具有很多独特之处:分子结构具有丰富的可设计性,强烈的温度依赖的胶束化行为以及溶剂选择的多样性,这些都极大丰富了其在溶液中自组装形成聚集体的研究内容。本文结合本课题组的工作着重综述了近期国内外有关线型和支状PEO-PPO嵌段聚醚在水溶液中聚集特性的研究进展,以及酸/碱、无机盐、醇类、小分子表面活性剂和聚合物等添加剂对其聚集行为的影响。PEO-PPO嵌段聚醚具有良好的生物相容性,在水溶液中能形成以PPO链段为疏水内核, PEO链段为亲水外壳的胶束结构,该结构非常适于作为疏水药物的载体。因此本文还综述了此类嵌段聚醚作为药物载体方面的研究成果,期望为药物剂型的开发研究提供理论支持。  相似文献   

9.
Conductance (kappa), pyrene fluorescence (I1/I3), cloud point (C(P)), and Krafft temperature (K(T)) measurements have been carried out for various dimethylene bis(alkyldimethylammonium bromide) (gemini) surfactants with different poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock polymers (TBP). From the kappa and I1/I3 studies, the critical micelle concentrations of mixed micelle formation between the gemini and TBP have been determined using regular solution theory. It has been observed that mixed micelle formation in all the binary mixtures of gemini+TBP occurs due to the unfavorable mixing, the magnitude of which decreases with increased hydrophobicity of the gemini component. The results are further supported by evaluating the mean micelle aggregation number and enthalpy of fusion from fluorescence and Krafft temperature measurements, respectively.  相似文献   

10.
Symmetrical poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide), PEO-PPO-PEO, triblock copolymers with 80% polyethylene oxide (PEO, the hydrophilic end blocks) and polypropylene oxide (PPO, the hydrophobic middle block) usually remain as molecularly dissolved at ambient temperature even at fairly high-concentrations (2 wt.% or more). However, the micellization is induced at lower concentration/temperature in the presence of salts. The results on salt induced micellization from four such hydrophilic copolymers Pluronic® F38, F68, F88 and F108 obtained from several independent techniques are described. FTIR and fluorescence results provide essentially identical critical micelle temperatures (CMTs) showing marked decrease with increase in PPO molecular weight and in the presence of salt. These copolymers were weakly surface active and did not show a clear break point in surface tension concentration plot typical of surfactants. While addition of salt decreases the cloud point, no significant micelle growth was observed even at temperature close to cloud point (CP). Marked increased in solubilization of an oil dye was observed in presence of KCl. Different methods showed good agreement in temperature/salt-induced micellization of these hydrophilic copolymers.  相似文献   

11.
The micellization process of a series of dissymmetric cationic gemini surfactants [CmH2m+1(CH3)2N(CH2)6N(CH3)2C6H13]Br2 (designated as m-6-6 with m = 12, 14, and 16) and their interaction with dimyristoylphosphatidylcholine (DMPC) vesicles have been investigated. In the micellization process of these gemini surfactants themselves, critical micelle concentration (cmc), micelle ionization degree, and enthalpies of micellization (DeltaHmic) were determined, from which Gibbs free energies of micellization (DeltaGmic) and entropy of micellization (DeltaSmic) were derived. These properties were found to be influenced significantly by the dissymmetry in the surfactant structures. The phase diagrams for the solubilization of DMPC vesicles by the gemini surfactants were constructed from calorimetric results combining with the results of turbidity and dynamic light scattering. The effective surfactant to lipid ratios in the mixed aggregates at saturation (Resat) and solubilization (Resol) were derived. For the solubilization of DMPC vesicles, symmetric 12-6-12 is more effective than corresponding single-chain surfactant DTAB, whereas the dissymmetric m-6-6 series are more effective than symmetric 12-6-12, and 16-6-6 is the most effective. The chain length mismatch between DMPC and the gemini surfactants may be responsible for the different Re values. The transfer enthalpy per mole of surfactant within the coexistence range may be associated with the total hydrophobicity of the alkyl chains of gemini surfactants. The transfer enthalpies of surfactant from micelles to bilayers are always endothermic due to the dehydration of headgroups and the disordering of lipid acyl chain packing during the vesicle solubilization.  相似文献   

12.
The aggregation behavior of cationic gemini surfactants with respect to variation in head group polarity and spacer length is studied through conductance, surface tension, viscosity, and small-angle neutron-scattering (SANS) measurements. The critical micellar concentration (cmc), average degree of micelle ionization (beta(ave)), minimum area per molecule of surfactant at the air-water interface (A(min)), surface excess concentration (gamma(max)), and Gibb's free energy of micellization (delta G(mic)) of the surfactants were determined from conductance and surface tension data. The aggregation numbers (N), dimensions of micelles (b/a), effective fractional charge per monomer (alpha), and hydration of micelles (h(E)) were determined from SANS and viscosity data, respectively. The increasing head group polarity of gemini surfactant with spacer chain length of 4 methylene units promotes micellar growth, leading to a decrease in cmc, beta(ave), and delta G(mic) and an increase in N and b/a. This is well supported by the observed increase in hydration (h(E)) of micelles with increase in aggregation number (N) and dimension (b/a) of micelle.  相似文献   

13.
A series of dissymmetric gemini surfactants with the general formula [C12H25(CH3)2N(CH2)sN(CH3)2C14H29]Br2 designed as 12-s-14, where s=2, 6, and 10, were synthesized and their physicochemical properties investigated. The effect of spacer length on Krafft temperature, adsorption at the air/solution interface, and association in aqueous solution was studied by tensiometry, conductometry, and cryo-transmission electron microscopy. The Krafft temperature was found to increase linearly with spacer length. In the submicellar concentration range the dissymmetric 12-s-14 surfactants display ion pairing and premicellar association. Adsorption at air/solution interfaces and micellization in aqueous solution are similar to the behavior of their symmetric counterparts and depend strongly on spacer length.  相似文献   

14.
A series of ethoxylated sodium monooctyl sulfosuccinates [E(n)SMOSS] and ethoxylated sodium monolauryl sulfosuccinates [E(n)SMLSS] have different units of ethylene oxide (n = 9, 14, 23) were synthesized. The surface and thermodynamic properties of these surfactants have been compared with sodium dioctyl sulfosuccinate surfactant (SDOSS) as a commonly used surfactant. The surface tension measurements at 25, 35, 45, and 55°C were used to determine of the critical micelle concentration (CMC) and surface active properties of these surfactants. The effect of the ethylene oxide (EO) unit and the alkyl chain length on the surface properties for the prepared surfactants was studied. The results show that the ethoxylated sodium monoalkyl sulfosuccinates generally have lower values of CMC than that of sodium dioctyl sulfosuccinate. The values of surface active parameters indicate that the ethoxylated sodium monooctyl sulfosuccinates and ethoxylated sodium monolauryl sulfosuccinates surfactants have adsorption properties better than the sodium dioctyl sulfosuccinate surfactant as a resulted presence of ethylene oxide in molecules of the prepared surfactants. The thermodynamic parameters show that the (EO) unites in the chemical structure of ethoxylated sodium monoalkyl sulfosuccinate surfactants improve their micellization and adsorption properties.  相似文献   

15.
Solubilization of two different types of organic dyes, Quinizarin with an anthraquinone structure and Sudan I with an azo structure, has been studied in aqueous solutions of a series of cationic gemini surfactants and of a conventional monomeric cationic surfactant, dodecyltrimethylammonium bromide (DTAB). Surfactant concentrations both above and below the critical micelle concentration were used. The concentration of solubilized dye at equilibrium was determined from the absorbance of the solution at λ(max) with the aid of a calibration curve. The solubilization power of the gemini surfactants was higher than that of DTAB and increased with increasing alkyl chain length. An increase in length of the spacer unit resulted in increased solubilization power while a hydroxyl group in the spacer did not have much effect. Ester bonds in the alkyl chains reduced the solubilization power with respect to both dyes. A comparison between the absorbance spectra of the dyes in micellar solution with spectra in a range of solvents of different polarity indicated that the dye is situated in a relatively polar environment. One may therefore assume that the dye is located just below the head group region of the micelle. Attractive π-cation interactions may play a role for orienting the dye to the outer region of the micelle.  相似文献   

16.
Gemini surfactants are constructed by two hydrophobic chains and two polar/ionic head groups covalently connected by a spacer group at the level of the head groups. Gemini surfactants possess unique structural variations and display special aggregate transitions. Their aggregation ability and aggregate structures can be more effectively adjusted through changing their molecular structures compared with the corresponding monomeric surfactants. Moreover, gemini surfactants exhibit special and useful properties while interacting with polymers and biomacromolecules. Their strong self-aggregation ability can be applied to effectively influence the aggregation behavior of both polymers and biomacromolecules. This short review is focused on the performances of gemini surfactants in aqueous solutions investigated in the last few years, and summarizes the effects of molecular structures on aggregation behavior of gemini surfactants in aqueous solution as well as the interaction of gemini surfactants with polymers and biomacromolecules respectively.  相似文献   

17.
The self-assembly behavior of polyethoxylate-based multicomponent nonionic surfactants was studied. Using the dynamic light scattering method, thermodynamical parameters such as the critical micelle concentration (cmc) and hydrophile-lipophile balance (HLB), as well as the micelle size and micelle size distribution, were determined. The number average molecular weight and number average HLB of the samples were determined by MALDI-TOF-MS and 1H NMR techniques, and the data were evaluated. A connection was found between the HLB and the ln(cmc) value of the samples which can be described by a simple equation. Using this equation and plotting ln(cmc) versus the average number of ethylene oxide units, lines were obtained at different temperatures, and their slope allowed the calculation of the contribution of a single ethylene oxide unit to the Gibbs free energy of micellization.  相似文献   

18.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m = 56 and n = 17 and 132, respectively, and gemini surfactants (oligooxa)-alkanediyl-alpha,omega-bis(dimethyldodecylammonium bromide) (12-EO(x)-12), x = 0-3, have been studied in aqueous solution using isothermal titration calorimetry. The thermograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations, Cp, < or =0.50 wt %, below the critical micelle concentration (cmc) of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. The critical aggregation concentration (cac) remains constant while deltaHmax2 and the saturation concentration, C2, increase with increasing copolymer concentration. Analysis of the cac data offers semiquantitative support that the degree of ionization of the surfactant aggregates bound to polymers is likely to be larger than that at the surfactant cmc. In P103 solutions at Cp > or = 0.05 wt %, two peaks appear in the thermograms and they are attributed to the interactions between the gemini surfactant and the micelle or monomeric forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. Dehydration of the copolymers by the surfactant may also play an important step in the interaction. The endothermic enthalpy change reflecting interactions between the surfactant and polymer decreases more rapidly as the length and hydrophilic character of the spacer increases, suggesting that more favorable interactions occur with the P103 monomers having shorter PEO segments.  相似文献   

19.
Improving the efficiency of gene delivery by using non-viral vectors is currently an area of considerable research interest. Novel derivatives of gemini surfactants having aza- (12-5N-12, 12-7N-12, 12-8N-12) and imino- (12-7NH-12) substituted spacer groups and C12 tails have been designed to improve DNA transfection. Physicochemical characterization of micelle and interfacial properties of these cationic compounds are reported. The effect of these substitutions on the aggregation properties of the gemini surfactants is discussed in the context of results for the 12-s-12 and 12-EOx-12 gemini series, previously reported in the literature. Aza substitution results in a spacer of intermediate hydrophobicity to the above series, reflected by the magnitude of both the critical micelle concentrations and head group areas. Enthalpy and apparent molar volume of micellization data illustrate the differences in the aggregation properties that result from the bulkier and more hydrophobic aza-substituent in the spacer as compared to an ether oxygen (for the 12-EOx-12 series) containing spacer. The 12-7N-12 and 12-8N-12 compounds show aberrant features in the surface tension and enthalpy of dilution results that are not observed for the 12-5N-12 and 12-7NH-12 compounds. Premicelle association is considered to be a source of this behaviour.  相似文献   

20.
The present research work is associated with the fluorescence investigations of binary aqueous mixed surfactants solutions of anionic bis-sulfosuccinate gemini surfactant (BSGSMA1,8) and three different conventional surfactants—anionic viz. sodium dodecyl sulfate (SDS), cationic viz. cetyl trimethyl ammonium bromide (CTAB), and nonionic surfactant viz. Triton X 100. Steady-state fluorescence spectroscopy technique has been utilized to examine the micellization behavior of aqueous solution of pure myristyl alcohol-based BSGSMA1,8 having flexible methylene chain [(CH2)8] as spacer group. Critical micelle concentration (CMC), aggregation number (N), and micropolarity of pure and mixed surfactants systems were explored during the investigations. The results revealed the best synergism behavior of prepared gemini BSGSMA1,8 with SDS as compared to CTAB and Triton X 100. The maximum reduction in the value of pyrene intensity ratio (I1/I3) was observed for gemini and SDS mixed surfactant solution. On the other hand, the increased I1/I3 value of mixed gemini with Triton X 100 exhibited that mixed surfactant system of anionic gemini BSGSMA1,8 with non-ionic Triton X 100 is not as compact as other mixed surfactant systems. Aggregation number increased and micropolarity decreased with increased concentration of gemini surfactants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号