首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary A method is described for determining the plutonium concentration by Isotope Dilution Alpha Spectrometry (IDAS) using238Pu as a spike. It involves the addition of a pre-calibrated spike solution to a known aliquot of the plutonium sample solution followed by source preparation using TEG as a spreading agent. The results obtained on a number of samples using this method are compared with those of IDMS using242Pu as a spike as well as with those obtained by IDAS using TTA for purification, with respect to precision and accuracy. Precision of 0.3–0.5% and an accuracy of 0.5% is demonstrated. This method eliminates the need of any separation and purification of plutonium from241 Am and a bulk of other impurities.
Plutoniumbestimmung durch Isotopenverdünnungs-Alpha-Spektrometrie ohne Abtrennung von Americium-241 und anderen Verunreinigungen
Zusammenfassung Bei dem beschriebenen Verfahren der Isotopenverdünnungs-Alpha-Spektrometrie (IDAS) wird238Pu als Spike benutzt. Eine vorgeeichte Spike-Lösung wird zu einem bekannten Aliquot der Probe gegeben und anschließend die Strahlungsquelle unter Verwendung von Tetraethylenglykol als Spreading-Reagens vorbereitet. Die nach diesem Verfahren erhaltenen Ergebnisse werden in bezug auf Präzision und Genauigkeit mit solchen verglichen, die mit Isotopenverdünnungs-Massenspektrometrie unter Verwendung von242Pu als Spike oder mit IDAS unter Verwendung von Thenoyltrifluoraceton zur Reinigung erhalten wurden. Eine Präzision von 0,3–0,5% und eine Genauigkeit von 0,5% wurden erzielt. Durch das beschriebene Verfahren erübrigt sich eine Reinigung des Pu von241Am und anderen Verunreinigungen.
  相似文献   

2.
A gamma-spectrometric method using an intrinsic high resolution germanium detector has been developed for the determination of isotope ratios of plutonium from samples in solution form. The method is based on the assay of low energy gamma-rays of238Pu,239Pu,240Pu and241Pu and does not require the use of branching intensities or the knowledge of detection efficiencies for different gamma rays. Since low energy gamma-rays are used, the effect of241Am has also been studied. It is found that results are not affected up to 0.5 wt% of241Am in plutonium samples. An accuracy of 3% is achievable in the determination of240Pu/239Pu and241Pu/239Pu atom ratios as demonstrated by carrying out measurements on isotopic standards of plutonium.  相似文献   

3.
A method is described for the determination of plutonium concentration in the presence of a bulk of other impurities by isotope dilution mass spectrometry /IDMS/ using239Pu as a spike. The method involves the addition of239Pu spike / 90 atom%/ to samples with239Pu / 70 atom%/ and vice versa. After ensuring chemical exchange between the sample and the spike isotopes, plutonium is purified by conventional anion exchange procedure in 7M HNO3 medium.239Pu/240Pu atom ratio in the purified spiked sample is determined with high precision /better than 0.1%/ using a thermal ionization mass spectrometer. Concentration of plutonium in the sample is calculated from the changes in239Pu/240Pu atom ratio in the spiked mixture. Results obtained on different plutonium samples using239Pu as a spike are compared with those obtained by the use of242Pu spike. Precision and accuracy comparable to those achieved by using242Pu are demonstrated. The method provides an alternative in the event of non-availability of enriched242Pu or244Pu required in IDMS of plutonium and at the same time, offers certain advantages over the use of242Pu or244Pu spike.  相似文献   

4.
Half-life of241Pu is of great importance in nuclear technology. In view of large variation in the values (13–15 y) reported till 1974 in literature, efforts have been made in different laboratories to determine this half-life with high precision and accuracy. In our laboratory, it has been determined by different methods which may be classified in two categories, viz. (1) parent decay method, and (2) daughter growth method. In the parent decay method, change in isotope ratios241Pu/239Pu,241Pu/240Pu and241Pu/242Pu was studied periodically by a thermal ionization mass spectrometer. Single as well as double ratio method was used to calculate the half-life. In the daughter growth method, the half-life was obtained in four independent ways. These were (1) alpha spectrometry taking239Pu and242Pu separately as reference isotopes and studying periodically the increase in alpha activity ratio, (2) alpha proportional counting for observing periodically the change in total alpha activity, (3) isotope dilution alpha spectrometry using243Am as a spike, (4) isotope dilution mass spectrometry using243Am as a spike. In all these methods, synthetic mixtures were prepared for achieving high precision and accuracy in different measurements. Based on the results obtained in this laboratory and the values reported by other laboratories, a half-life value of 14.4±0.1 y is recommended. The paper reviews the past history, puts forth the present status, highlights the current trends for studying the effect of chemical composition of plutonium on the half-life of241Pu and presents the future requirements for achieving higher accuracy in the half-life of241Pu.  相似文献   

5.
A method based on the geometric progression decrease of the counts in the far tail of the alpha spectrum is described for the simultaneous determination of plutonium, americium and curium by alpha spectrometry. For evaluating the precision and accuracy, synthetic mixtures were prepared from solutions of enriched isotopes and sources were prepared by direct evaporation method using tetraethylene glycol /TEG/ as a spreading agent and electropolished stainless steel discs as the backing material. Precision and accuracy of about 1% is demonstrated in the determination of244Cm/239Pu,241Am/239Pu,244Cm/233U,241Am/233U and239Pu/233U alpha activity ratios using a 450 mm2 silicon surface barrier detector.  相似文献   

6.
Determination of239Pu/233U,241Am/233U and244Cm/233U alpha activity ratios is required when using233U as a tracer for the determination of plutonium, americium and curium by alpha spectrometry. Precision and accuracy in the determination of these alpha activity ratios was evaluated by preparing synthetic mixtures from solutions of enriched isotopes of239Pu,241Am,244Cm and233U. Separate synthetic mixtures were prepared for each of the three alpha activity ratios. The sources from the synthetic mixtures were prepared by direct evaporation method using tetra ethylene glycol /TEG/ as a spreading agent, alpha spectra were recorded by employing solid state silicon surface barrier detectors coupled to a 4 K analyzer and the alpha spectra were evaluated by a method based on the geometric progression decrease for the far tail of the spectrum. Large area detector /i.e. 450 mm2/ was observed to reduce the effect of nonhomogeneous distribution, if any, of the two elements present in the source. Precision and accuracy of about 1% is demonstrated for the determination of239Pu/233U,241Am/233U and244Cm/233U alpha activity ratios using large area silicon surface barrier detector.  相似文献   

7.
A radiochemical method is described for the determination of238Pu,239(240)Pu and241Am in a single soil sample. Plutonium is separated from a HNO3 leaching solution by a Microthene-TNOA column; amcricium is coprecipitated by oxalic acid, decontaminated from polonium by a TNOA-column in HCl medium, separated from the rare earth elements by a Microthene-HDEHP column, eluted with a 0.07M DTPA+1M lactic acid solution and finally purified by a PMBP-TOPO extraction. The method supplies a good decontamination of Am and Pu from natural alpha emitters; starting from 50 g soil, the average yields were 75.1±13.4% for plutonium and 57.7±10.8% for Am.239(240)Pu,238Pu and241Am concentrations (mBq/kg) in three different kinds of soil were the following: 255, 10.4, 81.3 (uncultivated soils); 236, 11.6, 76.7 (cultivated soils); 46, 1.9, 19.8 (river sediment). The average ratios238Pu to239(240)Pu and241Am to239(240)Pu were 0.044 and 0.350, respectively.  相似文献   

8.
The origin and release date of environmental plutonium have been assessed by the measurement of plutonium and americium isotopic composition. The applicability and sensitivity of different plutonium isotope ratios, 240Pu/239Pu and 241Pu/239Pu measured by inductively coupled plasma sector field mass spectrometry and 238Pu/239Pu analysed by alpha spectrometry, have been evaluated for origin determination in several types of environmental samples. With use of mixing models the contribution of different sources (e.g. global fallout or Chernobyl) can be calculated. By the measurement of the 241Am/241Pu isotope ratio, the release date (i.e. formation of 241Pu by irradiation) can be estimated in environmental samples, which is an important parameter to distinguish recent plutonium release from previous (e.g. Chernobyl) emissions.  相似文献   

9.
Determination of americium is one of the requirements of chemical quality assurance of plutonium bearing fuel materials. Alpha-spectrometry is generally used for the determination of 241Am in Pu bearing fuels since the efficiency of semiconductor detector used for alpha-spectrometry is independent of the alpha-particle energy in the 4 to 8 MeV range. However, this method has limitations for Pu samples containing extremely small or very large amounts of 241Am. Thus an alternative methodology based on alpha/gamma (α/γ) activity ratio was developed and tested using different samples. The method is based on the determination of total γ-activity (of 60 keV peak) of an aliquot of the solution and the total α-activity present in the aliquot. The method is fast as it does not involve chemical separation of Pu and Am as required in the alpha-spectrometric method. Data obtained on synthetic and real life samples demonstrates the usefulness of the developed alpha/gamma ratio method for the determination of 241Am in Pu bearing fuel samples.  相似文献   

10.
A radiochemical method has been developed for the determination of238Pu,239, 240Pu,241Am,242Cm and244Cm in airborne effluents of nuclear power plants. The method involves conversion of transuranium elements to acid-soluble forms, dissolution, purification, electrodeposition and alpha spectrometric determination. Final recovery ranged from 69.0 to 75.4% for plutonium and from 26.8 to 68.3% for americium and curium.  相似文献   

11.
Age determination of single plutonium particles was demonstrated using five particles of the standard reference material, NBS 947 (Plutonium Isotopic Standard. National Bureau of Standards, Washington, D.C. 20234, August 19, 1982, currently distributed as NBL CRM-137) and the radioactive decay of 241Pu into 241Am. The elemental ratio of Am/Pu in Pu particles found on a carbon planchet was measured by wavelength dispersive X-ray spectrometry (WDX) coupled to a scanning electron microscope (SEM). After the WDX measurement, each plutonium particle, with an average size of a few μm, was picked up and relocated to a silicon wafer inside the SEM chamber using a micromanipulator. The silicon wafer was then transferred to a quartz tube for dissolution in an acid solution prior to chemical separation. After the Pu was chemically separated from Am and U, the isotopic ratios of Pu (240Pu/239Pu, 241Pu/239Pu and 242Pu/239Pu) were measured with a thermal ionization mass spectrometer (TIMS) for the calculation of Pu age. The age of particles determined in this study was in good agreement with the expected age (35.9 a) of NBS 947 within the measurement uncertainty.  相似文献   

12.
A combination alpha and conversion electron spectrometer was developed to quantify 239Pu/240Pu and 238Pu/241Am isotopic ratios of plated sources. The spectrometer was constructed with a commercially available low noise passivated ion-implanted planar silicon (PIPS) detector that was cooled to 77 K with liquid nitrogen. The combination spectrometer was used to quantify alpha-particles, conversion electrons, gamma-rays and X-rays associated with the decay of various plutonium isotopes and 241Am. Two amplifiers operated in parallel with different gains allowed for simultaneous acquisition of the lower energy region (21-60 keV) for internal conversion electrons, gamma-rays and X-rays, and the higher energy region (5050 keV-5550 keV) for alpha-particles. Energy resolutions of 2.2 keV FWHM (full-width at half maximum) for the 38.7 keV M conversion electrons and 11.2 keV for the 5499.2 keV alpha-particles from 238Pu were measured. The energy resolution combined with a spectral deconvolution method was sufficient to be able to quantify the radioactivity using the alpha-spectra as well as the electron spectra; however, quantification of the radioactivity using the internal conversion electron spectra was more problematic because of the presence of X-rays, gamma-rays, Compton scatter electrons and the number of electron peaks present. Deconvolution of the alpha-spectra yielded 239Pu and 240Pu activities (as % of total Pu activity), which differed from expected values by -3.0% to 5.4%. Deconvolution of an internal conversion electron spectrum of a high 239Pu and low 241Am activity sample yielded 239Pu and 240Pu activities, which differed by -17.1 and -35.5% relative to the alpha-measurements, respectively. Determination of the Pu activity using the electron spectra was more problematic in samples where the 241Am activity dominated. Determination of 238Pu and 241Am activity by the electron spectroscopy data was also obtained and compared with the alpha-spectroscopy results. Theoretical investigation of the removal of 241Am or use of a 400 eV electron spectrometer indicated that the internal conversion electron spectra could be used to determine the 238Pu, 239Pu, 240Pu/241Am (when present) activity with and without spectral deconvolution, respectively.  相似文献   

13.
Among the transuranic elements present in the environment, plutonium isotopes are mainly attached to particles, and therefore they present a great interest for the study and modelling of particle transport in the marine environment. Except in the close vicinity of industrial sources, plutonium concentration in marine sediments is very low (from 10−4 ng kg−1 for 241Pu to 10 ng kg−1 for 239Pu), and therefore the measurement of 238Pu, 239Pu, 240Pu, 241Pu and 242Pu in sediments at such concentration level requires the use of very sensitive techniques. Moreover, sediment matrix contains huge amounts of mineral species, uranium and organic substances that must be removed before the determination of plutonium isotopes. Hence, an efficient sample preparation step is necessary prior to analysis. Within this work, a chemical procedure for the extraction, purification and pre-concentration of plutonium from marine sediments prior to sector-field inductively coupled plasma mass spectrometry (SF-ICP-MS) analysis has been optimized. The analytical method developed yields a pre-concentrated solution of plutonium from which 238U and 241Am have been removed, and which is suitable for the direct and simultaneous measurement of 239Pu, 240Pu, 241Pu and 242Pu by SF-ICP-MS.  相似文献   

14.
Americium and plutonium concentrations in food samples and human tissue samples were determined using alpha-ray spectrometry.Food samples, representative of the average dietar intake over a period of 30d in Japan, were pruchased in Akita during 1985 and 1986. The food was divided into six groups: cereals, vegetable, fruits/beans, seaweeds, fish/shellfish, and meats/eggs/milk. Most of the. total ingestion of both Pu and Am was contributed by seaseed and fish/shellfish. The concentration of Am in the other food groups was low.A compoarison of the measured241Am/239+240Pu ratio in human liver with the predicted value of the ICRP-30 or ICRP-48 model showed that the half-life of Am in the liver is approximately 2–10y. The human tissue samples were obtained from subjects who died in Akita and Niigata Prefectures in northern Japan during 1981–1984. The median concentration of241Am was 1.4 mBq/kg-wet in the stemum (n=11), 3.4 mBq/kg-wet in the liver (n=19), and 0.5 mBq/kg-wet in the lung (n=15). The ratio of241Am/239+240Pu was 0.34 in the sternum, 0.12 in the liver, and 0.14 in the lung.  相似文献   

15.
The objectives of this study were to establish a ratio for241Am to239Pu in soil at the Rocky Flats Plant and to compare241Am concentrations obtained using in-situ and laboratory gamma spectroscopy measurements to concentrations determined with radiochemical analysis and alpha spectroscopy. Soil samples were collected for radiochemical and laboratory gamma spectroscopy analysis from vertical profiles in 3 cm layers to a depth of 21 cm at predetermined locations along transects oriented in the direction of prevailing winds. The origin for the transects was the center of the 903 Pad at the Rocky Flats Plant, which is believed to be the source for most of the241Am and239Pu contamination. A 100 minute in-situ gamma spectroscopy measurement was made at each soil sample location with a portable HPGe detector. Soil samples were dried, passed through a 2 mm sieve, mixed, and split in two fractions. One fraction was analyzed radiochemically for241Am and239Pu and the second was analyzed using laboratory gamma spectroscopy. The median ratio of241Am to239Pu activities, which appears to be independent of soil depth and distance from suspected sources, was 0.17. There is a strong correlation between241Am and239Pu concentrations determined using radiochemical analysis with alpha spectroscopy and concentrations determined with laboratory gamma spectroscopy. Results from in-situ gamma spectroscopy measurements were also correlated with the radiochemical analyses but exhibited greater variability than laboratory measurements. This on-going investigation has demonstrated that it is possible to indirectly measure239Pu concentrations in soil if the ratio of241Am to239Pu can be established. The results indicate that judicious use of a combination of radiochemical analyses with laboratory and in-situ gamma spectroscopy measurements may provide a cost-effective approach for characterization of large sites where241Am and239Pu contamination occur.  相似文献   

16.
Trace metallic impurity analysis by spectroscopic techniques is one of the important steps of chemical quality control of nuclear fuel materials. Depending on the burn-up and the storage time of the fuel, there is an accumulation of 241Am in plutonium based fuel materials due to β decay of 241Pu. In this paper, attempts were made to develop a method for separation of 241Am from 1.2 kg of analytical solid waste containing 70% U, 23% Pu, 5% Ag and 1–2% C as major constituents along with other minor constituents generated during trace metal assay of plutonium based fuel samples by d. c. arc carrier distillation atomic emission spectrometry. A combination of ion exchange, solvent extraction and precipitation methods were carried out to separate ~45 mg of 241Am as Am(NO3)3 from 15 L of the analytical waste solution. Dowex 1×4 ion exchange chromatographic method was used for separation of Pu whereas 30% TBP–kerosene was utilized for separation of U. Am was separated from other impurities by fluoride precipitation followed by conversion to nitrate. The recovery of Pu from ion exchange chromatographic separation step was ~93% while the cumulative recovery of Am after separation process was found to be ~90%.  相似文献   

17.
Procedure for analysis of plutonium isotopes in soil samples was developed using a new molecular recognition technology product AnaLig?Pu-02 gel. Extraction chromatography TEVA? Resin was used for purification of plutonium phase to remove thorium impurities which interfere in Pu determination by alpha spectrometry. The performance of the method was successfully tested by analysis of a sand stimulant sample and a soil sample spiked with known activity of 239Pu. The results obtained for procedures were compared in terms of activities and recoveries.  相似文献   

18.
A sensitive and reliable metbod for the sequential separation and determination of plutonium,241Am and90Sr in soil samples was developed. Plutonium was separated by a Microthene-TNOA column. Then90Y (for90Sr determination) was separated from americium by a HDEHP column after elimination of large amounts of interfering stable or radioactive nuclides (iron,210Bi and210Po etc.) by an oxalate precipitation and a Microthene-TNOA column. Finally americium was purified by another HDEHP column and a PMBP-TOPO extraction. A special attention was paid to the decontamination of Pu and Am from210Po and of90Y from210Bi; the relevant decontamination factors resulted greater than 105, 106 and 104 respectively. The detection limits were 1.2 mBq/kg for Pu and 1.7 mBq/kg for241Am and 0.32 Bq/kg for90Sr. The procedure was checked by analyzing three certified samples supplied by IAEA. Some Italian soil samples were also analyzed giving average yields of 84.9±7.2% for Pu, 57.8±3.2%for Am and 96.7±1.6% for Y; the239+240Pu,238Pu,241Am and90Sr contents (Bq/kg) ranged from 0.347 to 1.53, from 0.013 to 0.048, from 0.126 to 0.556 and from 2.89 to 11.6 respectively and the average ratios were 0.037±0.017 for238Pu/239+240Pu, 0.357±0.040 for241Am/239+240Pu and 7.0±1.2 for90Sr/239+240Pu.  相似文献   

19.
The age of plutonium is defined as the time since the last separation of the plutonium isotopes from their daughter nuclides. In this paper, a method for age determination based on analysis of 241Pu/241Am and 240Pu/236Pu using ICP-SFMS is described. Separation of Pu and Am was performed using a solid phase extraction procedure including UTEVA, TEVA, TRU and Ln-resins. The procedure provided separation factors adequate for this purpose. Age determinations were performed on two plutonium reference solutions from the Institute for Reference Materials and Measurements, IRMM081 (239Pu) and IRMM083 (240Pu), on sediment from the Marshall Islands (reference material IAEA367) and on soil from the Trinity test site (Trinitite). The measured ages based on the 241Am/241Pu ratio corresponded well with the time since the last parent-daughter separations of all the materials. The ages derived from the 236U/240Pu ratio were in agreement for the IRMM materials, but for IAEA367 the determination of 236U was interfered by tailing from 238U, and for Trinitite the determined age was biased due to formation of 236U in the detonation of the “Gadget”.  相似文献   

20.
Using 1 gram of 241Am from LANL stocks, the purification steps required to obtain a solution of 241Am from the original material are described. Part of the purified solution was submitted for purity analysis by mass spectrometry, radiochemistry and trace metals analysis. The impurities were expected to be 239Pu and 237Np. A second fraction of this material was used for electroplating three samples onto titanium disks that were suitable for insertion into an instrument package to be placed into the DANCE detector. The purification methods used, the electroplating setup and the solutions to various problems that were encountered in making these targets are discussed. The analytical results are discussed as well as the yields from the electrodeposition process. Comparison of these yields with those from similar experiments utilizing 235U and 243Am are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号