首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 989 毫秒
1.
A radiochemical procedure is described for the simultaneous determination of238Pu,239+240Pu,241Pu,241Am,242Cm,244Cm,89Sr, and90Sr in vegetation samples. The method was applied for the determination of these, radionuclides in grass, collected near Munich after the fallout from the reactor accident at Chernobyl, USSR. The specific activities observed were (in Bq kg–1 dry weight):238Pu, 0.077;239+240Pu, 0.15;241Pu, 3.9;241Am, 0.031;242Cm, 3.0;244Cm, 0.008;89Sr, 2000;90Sr, 99.  相似文献   

2.
A method based on the geometric progression decrease of the counts in the far tail of the alpha spectrum is described for the simultaneous determination of plutonium, americium and curium by alpha spectrometry. For evaluating the precision and accuracy, synthetic mixtures were prepared from solutions of enriched isotopes and sources were prepared by direct evaporation method using tetraethylene glycol /TEG/ as a spreading agent and electropolished stainless steel discs as the backing material. Precision and accuracy of about 1% is demonstrated in the determination of244Cm/239Pu,241Am/239Pu,244Cm/233U,241Am/233U and239Pu/233U alpha activity ratios using a 450 mm2 silicon surface barrier detector.  相似文献   

3.
Determination of239Pu/233U,241Am/233U and244Cm/233U alpha activity ratios is required when using233U as a tracer for the determination of plutonium, americium and curium by alpha spectrometry. Precision and accuracy in the determination of these alpha activity ratios was evaluated by preparing synthetic mixtures from solutions of enriched isotopes of239Pu,241Am,244Cm and233U. Separate synthetic mixtures were prepared for each of the three alpha activity ratios. The sources from the synthetic mixtures were prepared by direct evaporation method using tetra ethylene glycol /TEG/ as a spreading agent, alpha spectra were recorded by employing solid state silicon surface barrier detectors coupled to a 4 K analyzer and the alpha spectra were evaluated by a method based on the geometric progression decrease for the far tail of the spectrum. Large area detector /i.e. 450 mm2/ was observed to reduce the effect of nonhomogeneous distribution, if any, of the two elements present in the source. Precision and accuracy of about 1% is demonstrated for the determination of239Pu/233U,241Am/233U and244Cm/233U alpha activity ratios using large area silicon surface barrier detector.  相似文献   

4.
Assays of alpha- and beta-emitting radionuclides in swipe samples are often required to monitor the presence of removable surface contamination for radiological protection and control in nuclear facilities. Swipe analysis has also proven to be a very sensitive analytical technique to detect nuclear signatures for safeguard verification purposes. A new sequential method for the determination of actinide isotopes and radiostrontium in swipe samples, which utilizes a streamlined column separation with stacked anion and extraction chromatography resins, has been developed. To validate the separation procedure, spike and blank samples were prepared and analyzed by inductively coupled mass spectrometry (ICP-MS), alpha spectrometry and liquid scintillation (LS) counting. Low detection limits have been achieved for isotopic analysis of Pu (238Pu, 239Pu, 240Pu, 241Pu), U (234U, 235U, 238U), Am (241Am), Cm (242Cm, 243/244Cm) and Sr (90Sr) at ultra-trace concentration levels in swipe samples.  相似文献   

5.
This paper describes the development and validation of analytical procedures for the separation and determination of90Sr,90Y,238Pu,239/240Pu,241Am,241Cm and243/244Cm in liquid effluents and environmental samples. The procedures use supported reagents for extraction chromatography (reversed phase partition chromatography) that enable the separation of the analytes from a large number of other radionuclides present.  相似文献   

6.
Environmental contamination by artificial radionuclides and the evaluation of their sources require precise isotopic analysis and accurate determination of actinide elements above all plutonium and americium. These can be achieved by alpha spectrometry or by inductively coupled plasma mass spectrometry (ICP-MS) after chemical separation. In the present work, a simple, rapid method has been developed for the sequential separation of actinide elements from aqueous solutions and their determination by alpha spectrometry. Extraction chromatography was applied to the separation of 241Am, 244Cm, 239 + 240,238Pu, 237Np and 238,235,234U using microporous polyethylene supporting tri-n-octylamine as the stationary phase and hydrochloric acid with and without reducing agents as the mobile phase. Actinide in 9 M HCl solution is introduced into the anion exchange column; Pu (IV), Np (IV) and U(VI) are retained on the column while Am (III) and Cm passed through. Pu is eluted first, reductively, after which, Np and then U are eluted. The method can be applied to all aqueous solutions which do not contain strong complexing or precipitation agents for the elements considered.  相似文献   

7.
A non-destructive method for determining the amount of actinoids has been developed. The method is based on thermal neutron coincidence counting and employs a selective detection of neutrons resulting from the spontaneous fission of actinoids. The detection system is described in detail and the measurement results of244Cm as an example are presented. The results show that the measured fission rate of244Cm is consistent with the fission rate calculated from ENDF/B-V data and that the amount of244Cm can be determined within about 5% accuracy even in the presence of a large amount of actinoids, for example, up to 2.6·106, 3.6·104, or 1.6·103 times in the mass ratio of239Pu,241Am, or240Pu to244Cm, respectively.  相似文献   

8.
A radiochemical procedure is given for the simultaneous determination of low levels of129I, actinides (Pu, Am, Cm) and90Sr in vegetation samples. It is shown that grass samples up to 5 kg fresh weight can be wet ashed conveniently by hydrogen peroxide under alkaline conditions, subsequent to an initial enzymatic disintegration. After purification of the iodine fraction,129I is determined by neutron activation analysis. Using alpha spectrometry,238Pu and239,240Pu are determined in the plutonium fraction, and241Am,242Cm, and244Cm in the americium/curium fraction. The90Sr is determined after separation by beta counting its decay product90Y.  相似文献   

9.
Curium was separated and recovered as an oxalate from a Cm–Pu mixed oxide which had been a 244Cm oxide sample prepared more than 40 years ago and the ratio of 244Cm to 240Pu was estimated to 0.2:0.8. Radiochemical analyses of the solution prepared by dissolving the Cm–Pu mixed oxide in nitric acid revealed that the oxide contained about 1 at% of 243Am impurity. To obtain high purity curium solution, plutonium and americium were removed from the solution by an anion exchange method and by chromatographic separation using tertiary pyridine resin embedded in silica beads with nitric acid/methanol mixed solution, respectively. Curium oxalate, a precursor compound of curium oxide, was prepared from the purified curium solution. 11.9 mg of Cm oxalate having some amounts of impurities, which are 243Am (5.4 at%) and 240Pu (0.3 at%) was obtained without Am removal procedure. Meanwhile, 12.0 mg of Cm oxalate (99.8 at% over actinides) was obtained with the procedure including Am removals. Both of the obtained Cm oxalate sample were supplied for the syntheses and measurements of the thermochemical properties of curium compounds.  相似文献   

10.
Elemental and isotopic determination of americium and curium in spent nuclear fuels is necessary to validate neutronic calculation codes and for nuclear waste disposal purposes. Prior to mass spectrometric analysis, it is mandatory to perform separations in order to eliminate isobaric interferences between U, Pu, Am and Cm. In the spent fuels samples analyzed, a separation of U and Pu has been first realized with an anion-exchange resin. Then a rapid Am/Cm separation has been developed by high-performance liquid chromatography (HPLC) with an on-line detection using the Am and Cm α-emission. The influence of the different parameters on the chromatographic separation are described and discussed. Inductively coupled plasma mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) have been used to measure the isotopic composition of U, Am and Cm and to determine the 241Am/238U and 244Cm/238U ratios with the double spike isotope dilution method. The measurement procedures and the accuracy and precision of the results obtained with a quadrupole ICP-MS on different spent fuels samples are discussed and compared with those obtained by TIMS, used as a reference technique. Received: 30 November 1998 / Revised: 8 January 1999 / Accepted: 12 January 1999  相似文献   

11.
Elemental and isotopic determination of americium and curium in spent nuclear fuels is necessary to validate neutronic calculation codes and for nuclear waste disposal purposes. Prior to mass spectrometric analysis, it is mandatory to perform separations in order to eliminate isobaric interferences between U, Pu, Am and Cm. In the spent fuels samples analyzed, a separation of U and Pu has been first realized with an anion-exchange resin. Then a rapid Am/Cm separation has been developed by high-performance liquid chromatography (HPLC) with an on-line detection using the Am and Cm α-emission. The influence of the different parameters on the chromatographic separation are described and discussed. Inductively coupled plasma mass spectrometry (ICP-MS) and thermal-ionization mass spectrometry (TIMS) have been used to measure the isotopic composition of U, Am and Cm and to determine the 241Am/238U and 244Cm/238U ratios with the double spike isotope dilution method. The measurement procedures and the accuracy and precision of the results obtained with a quadrupole ICP-MS on different spent fuels samples are discussed and compared with those obtained by TIMS, used as a reference technique. Received: 30 November 1998 / Revised: 8 January 1999 / Accepted: 12 January 1999  相似文献   

12.
A combined radiochemical separation method has been developed that enables the simultaneous determination of 234U, 235U, 238U, 237Np, 239,240Pu, 238Pu, 241Am, 242Cm, and 244Cm in medium and low level liquid radioactive wastes. The main steps of the method are sample destruction, co-precipitation on iron(II)-hydroxide and calcium-oxalate, separation by extraction chromatography using supported dipentyl-pentyl phosphonate (UTEVA) and supported N,N-octylphenyl-di-i-butylcarbamoylmethyl phosphine oxide with tributyl phosphate (TRU), and α source preparation. The key parameter of the method is the adjustment of the oxidation states of the actinoides before adding the sample onto the UTEVA column. It has been determined that (NH4)2S2O8 can be used for oxidation state adjustment resulting sufficient chemical yields.  相似文献   

13.
Transuranium nuclides were produced by irradiating a pellet of natural uranium sulfide in the Japan Material Testing Reactor (JMTR). After irradiation, a successive separation of uranium, plutonium, americium and curium was carried out. The fractional concentrations of the nuclides238Pu,239Pu,240Pu,241Am,243Am,242Cm and244Cm were determined by α-ray spectrometry, and those of241Pu and242mAm were estimated from the build-up of α-emitting daughters,241Am and242Cm, respectively. As the yield of242Pu was too slight to be detected by α-counting, the neutron activation analysis of the plutonium fraction based on the242Pu(n, γ)243Pu reaction was carried out by γ-ray spectrometry, and it was shown that a few pg of242Pu could be determined. A burn-up of235U was also estimated by neutron activation analysis. The experimental results are compared with the calculated ones.  相似文献   

14.
A sequential separation procedure has been developed for the determination of transuranic elements and fission products in uranium metal ingot samples from an electrolytic reduction process for a metallization of uranium dioxide to uranium metal in a medium of LiCl-Li2O molten salt at 650 °C. Pu, Np and U were separated using anion-exchange and tri-n-butylphosphate (TBP) extraction chromatography. Cs, Sr, Ba, Ce, Pr, Nd, Sm, Eu, Gd, Zr and Mo were separated in several groups from Am and Cm using TBP and di(2-ethylhexyl)phosphoric acid (HDEHP) extraction chromatography. Effect of Fe, Ni, Cr and Mg, which were corrosion products formed through the process, on the separation of the analytes was investigated in detail. The validity of the separation procedure was evaluated by measuring the recovery of the stable metals and 239Pu, 237Np, 241Am and 244Cm added to a synthetic uranium metal ingot dissolved solution.  相似文献   

15.
Weekly, consecutive primary coolant samples from a boiling water reactor have been analyzed for239, 240Pu,238Pu+241Am,242Cm and244Cm for about two years, and for238Pu,241Pu and241Am for one year. Concentration ranges are reported. Samples were prepared for counting either directly by evaporation or by chemical separation on BioRad AG 1×4 resin and subsequent electrolysis, and were counted in 20 cm dia Frish grid ionization chambers. Procedures are described. For most actinide nuclides, activity ratios in primary coolant were found to be different from those in worldwide fallout, thus allowing an identification of origin in the case, that actinides should be detected in the vicinity of a nuclear power station.  相似文献   

16.
The heaviest elements are synthesized in heavy-ion induced hot fusion reactions with various actinide targets. Because the actinide material is often available only in very limited amounts, a deposition method with high yields (~90 %) is needed. We report on the production of 244Pu, 243Am, 248Cm, 249Bk, and 249Cf targets on thin Ti backings by molecular plating. Different chemical purification steps using ion chromatographic techniques were applied for the purification of 249Cf and 244Pu. The deposition procedure applied for the production of ~0.4–0.8 mg/cm2 thick targets is described. The deposition yield was determined either by α-particle or γ-ray spectroscopy. Furthermore, neutron activation analysis has been applied in the case of 244Pu, 243Am, and 248Cm. Information about the spatial distribution and homogeneity of the target layer was obtained by radiographic imaging.  相似文献   

17.
Summary A thermal ionization mass spectrometry (TIMS) method is described for the determination of ultra-trace levels of plutonium isotopes in human urine samples. The method has been validated through the analysis of artificial urine samples spiked with known amounts of 239Pu ranging from 2.5 fg to 50 fg (6-115mBq). A slight positive bias of 1.7%-2.7% was determined, with a relative precision of 2.2% at 50 fg, increasing to 2.7% for 5-25 fg 239Pu. The detection limit of the method was 0.53 fg (1.2mBq) 239Pu, and the instrumental detection limit was at least 0.1 fg. The determination of the isotopic signature of the sample with 239Pu, 240Pu, and 241Pu amounts of several femtograms is possible, and was demonstrated with the determination of the 240 to 239 ratio in an inter-laboratory sample comparison. The method is relatively free from interferences, 95% of sample preparations were acceptable both in terms of chemical recovery and lack of isobaric interference. The isotopic abundance of the 242Pu SRM 4334E of the National Institute of Standards and Technology (NIST) was also determined by TIMS and was found to be 99.99967 atom% 242Pu.  相似文献   

18.
A sequential radiochemical scheme for the separation of Pu and Am (along with Cm) from environmental materials is given. Optimum conditions for coprecipitation of these elements on bismuth phosphate and the influence of Fe and Th content of the sample on the recovery of Am were studied. Internal tracers242Pu and243Am were used as tracers for Pu and Am, respectively, and estimates were made by alpha-spectrometry. Average recoveries obtained from sea water were 85% and 77% for Pu and Am, respectively. Lower recoveries (<50%) were obtained for Am in sediments. Work carried out as part of the International Atomic Energy Agency Research Contract 1954/RB/RI.  相似文献   

19.
It has been observed that the intensities of the gamma-rays emitted in the alpha-decay of 245Cm reported in the literature result in calculated concentrations that do not agree with those obtained via other methods. In this work, a 245Cm sample was chemically isolated from a sample of 249Cf, and the gamma-ray intensities were measured relative to the alpha-particle emission rate of the resulting source; there is a systematic bias relative to the literature intensities of approximately 8%. In addition, gamma-rays that have never before been observed in the decay of 245Cm are placed in the level scheme of the decay product, 241Pu.  相似文献   

20.
Radiochemical procedures are discussed for the isolation and determination of a suite of radionuclides in samples from the Black Sea following their input from the Chernobyl reactor accident. The samples analyzed include discrete water samples and both suspended and dissolved phases collected by in-situ chemisorption techniques. The radiochemical scheme permits the separation and analysis of134Cs,137Cs,90Sr,144Ce,147Pm,106Ru,239Pu,240Pu, and in some instances242Cm,238Pu, and241Am. The detection techniques employed include various instrumental gamma spectrometric methods, low-level beta counting, alpha spectrometry, and mass spectrometry.The method's developments are described and data are presented on some representative samples from the Black Sea. The sensitivity of the analysis for the various nuclides and sample types is summarized and questions of radiochemical interferences are addressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号