首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syntheses and characterizations of sol–gel precursors of Sr2CeO4 were carried out. Each molecular precursor, [Sr2Ce(OCH2CH2OCH3)8] (1), [Sr2Ce(OiPr)8] (2) and [Sr2Ce2(OiPr)12(iPrOH)4] (3) was prepared from mixtures of Sr complexes and cerium(IV) alkoxides. The molecular structure of 3 showed that [CeO6] octahedra are connected with distorted [SrO6] octahedra by sharing edges with oxo bridges. X-ray powder diffraction patterns and spectrofluorometry were used to determine the evolution of structure from the precursor molecules to the luminescent oxides. The luminescent strontium cerium oxides were derived at relatively mild reaction conditions (700 °C for 1 h), and complete conversion was observed at 1000 °C for 1 h from these precursors. Comparing the spectra of the oxides derived from 2 and 3, the emission intensity of the oxide derived from 2 is much stronger.  相似文献   

2.
In this investigation, several spectroscopic and analytical techniques were used to determine the chemical compositions and structures of the lead, zirconium, titanium, and Pb-(Zr, Ti) alkoxides involved in the sol-gel synthesis of PZT thin films. These techniques included 1H, 13C, and 207Pb NMR; FT-IR; gas chromatography; Karl Fischer titration; and number-average molecular weights (M n ) determined by cryoscopy. It was found that the titanium precursor had a M n of 548 and a formula of [Ti(OCH2CH2OCH3)4]1.6; the zirconium precursor had a M n of 1015 and a formula of [Zr(OCH2CH2OCH3)4]2.6; and the lead precursor had a formula Pb6(OOCCH3)5(OCH2CH2OCH3)7. 4 H2O and a molecular weight of 2131 (M n =2113). It was observed that residual water from the incomplete dehydration of lead acetate trihydrate coupled with released water due to the esterification of acetic acid caused M-O-M (M=Pb, Zr, Ti) bonds in the Pb-(Zr, Ti) alkoxide. Two possible isomeric structures of the Pb-(Zr, Ti) alkoxide have been proposed. They are both cyclic and have a formula of Pb2MMO2(OR)8(ROH)2, (MM=Zr and/or Ti) and a molecular weight of 1336 (M n =1386).  相似文献   

3.
Ti(OPr i )4 or Zr(OPr i )4 · Pr i OH react with hydrocarbon-insoluble complexes M{(OCH2CH2)NH(CH2CH2OH)}2 (M = Mg, Ca, Sr, Ba) in a 2:1 molar ratio to yield hydrocarbon-soluble heterobimetallic diethanolaminate isopropoxide complexes [M{(OCH2CH2)2NH}2{M(OPr i )3}2] (M = Mg, Ca, Sr, Ba; M = Ti, Zr), which have been characterized by elemental analyses, molecular weight measurements and spectroscopic [i.r., n.m.r. (1H and 13C)] studies.  相似文献   

4.
The alkoxides of molybdenum and other heavy transition elements such as Ta or Nb were found to be unreactive towards each other. The bimetallic derivatives could be obtained either via partial hydrolysis that gave Mo2Ta4O8(OMe)16 (I) or via partial thermolysis that provided access to Mo4Ta2O8(OiPr)14 (II), Mo3Ta2O8(OiPr)10 (III), Mo4Ta4O16(OiPr)12 (IV), Mo4Nb2O8(OiPr)14 (V) and Mo4W2–x Mo x O10(OiPr)12 (VI). IVI can be isolated only from hydrocarbon media as the presence of alcohols leads to precipitation of insoluble homometallic derivatives of molybdenum. The cathodic reduction of MoO(OR)4 (R = Me, Et) in the presence of LiCl and M(OR)5 (M = Nb, Ta) leads only to formation of LiMo2O2(OMe)7(MeOH) (VII) or LiMo2O2(OEt)7 (VIII) respectively.  相似文献   

5.
Monomeric tungsten oxo‐aminoalkoxides W(O)(OPri)3(L) [L = O(CH2)nNMe2; n = 2 (dmae, 1) and 3 (dmap, 2 )] were synthesized by alcohol exchange with [W(O)(OPri)4]2 and characterized spectroscopically. 1, 2 and [W(O)(OPri)4]2 were used as precursors for the aerosol‐assisted chemical vapour deposition of WO3 thin films, which were characterized by glancing angle X‐ray diffraction, SEM and transmission‐reflectance measurements. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The reactions between titanium alkoxides Ti(OR)4 (R = Et,i Pr) and strontium -diketonates Sr(-dik)2 (-dik = thd, acac) were investigated. The various Sr-Ti species, Sr2Ti2(-dik)4 (OR)8, have a 1:1 Sr:Ti stoichiometry and were characterized by elemental analysis, FT-IR and by single-crystal X-ray diffraction for Sr2Ti2(3-OiPr)2 (-OiPr)4 (OiPr)2(thd)4 (1). The hydrolysis-polycondensation reactions of the various species were investigated and the resulting powders analyzed by light scattering and XRD. While acetone was found to have little influence on the hydrolysis reactions of the Sr-Ti species, polycondensation of Ti(OiPr)4 in neat acetone offers a trinuclear enolate Ti(3-O)2(OCMe=CH2)3 (OiPr)5(iPrOH) (4). Comparisons between the Ba-Ti and Sr-Ti systems are given.  相似文献   

7.
Syntheses and Crystal Structures of Cu and Ag Complexes with [Ta6S17]4— Ions as Ligands In the presence of phosphines saturated solutions of the thiotantalates (NEt4)4[(Ta6S17)] · 3MeCN react with copper or silver salts to give new heterobimetallic Ta—M—S clusters (M = Ag, Cu). These clusters contain the intact cluster core of the [Ta6S17]4— anion. Compounds [Cu(PMe3)4]3[(Ta6S17)Cu(PMe3)] · 2MeCN ( 1 ), (NEt4)[(Ta6S17)Ag3(PMe2iPr)6] · 5MeCN ( 2 ), [(Ta6S17)Cu4 (PMe2iPr)8] · MeCN ( 3 ), [(Ta6S17)Cu5Cl(PMe2iPr)9] · MeCN ( 4 ) and [Ta2Cu2S4Cl2(PMe2iPr)6] · 2MeCN ( 5 ) are presented herein. The structures of these compounds were elucidated by single crystal X‐ray structural analyses.  相似文献   

8.
Reactions of cis-dialkoxy-bis(acetylacetonato)titanium(IV), [(acac)2Ti(OR)2] (R = Et, Pr i ) with alkoxyalkanols (ROCH2CH2OH) (R = Me, Et, n-Bu) in 1:1 and 1:2 molar ratios in refluxing benzene under anhydrous conditions yield [(acac)2Ti(OR)2–n (OCH2CH2OR) n ] (n = 1 or 2) complexes, which were purified by distillation under reduced pressure. On the basis of i.r. and n.m.r. (1H- and 13C-) spectral studies, a cis-octahedral environment around TiIV is proposed. On keeping the distilled dark brown-red viscous liquid [(acac)2Ti(OEt)(OCH2CH2OBu)] for 2 weeks, orange yellow crystals of [(acac)2TiO]2 were obtained. A single crystal X-ray diffraction study suggests the product is a new modification of [(acac)2TiO]2.  相似文献   

9.
Anodic oxidation of tantalum in isopropyl alcohol or prolonged reflux of an alcohol solution of Ta(OPri)5 afford crystalline oxoisopropoxide Ta2O(OPri)8 · PriOH (1). In its molecule, two octahedra about Ta atoms are linkedvia the shared edge [(OPri)O]. Compound1 is the first example of oxoalkoxide containing such a small number of metal atoms. Unlike the known polynuclear molecules M n O m (OR) p , oxoalkoxide1 is stable in solutions; on transition to the gas phase, this compound is desolvated to form a very stable molecule Ta2O(OPri)8 (apparently, consisting of two octahedra with a shared edge). According to the data of mass spectrometry, analogous molecules exist in the gas phase over Ta(OAlk)5 (Alk = Me, Et, Pri, or Bu11). When compound1 is heated invacuo (10–2–10–3 Torr), Ta(OPri)5 is sublimated. Crystals of Ta7O9(OPri)17 (2) were formed upon prolonged storage of solutions of1 in PriOH. Heptanuclear molecule2 consists of two [Ta4] tetrahedra with a shared vertex. These tetrahedra are additionally linked togethervia one 3-oxo and two 2-OPri groups. Complex2 is a representative of heptameric oxoalkoxides of a new structural type.Deceased in I995.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 125–131, January, 1996.  相似文献   

10.
The tetrameric Cu(β-diketonate) alkoxide complex [Cu(thd)(OCH2CH2OCH3)]4 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; 1a ) reacts with the alkaline earth metal alkoxides [M(OCH2CH2OCH3)2] (M = Ca, 2a ; M = Sr, 2b ; M = Ba, 2c ) to yield the heteronuclear compounds [Cu2M(thd)3(OCH2CH2OCH3)3] (M = Ca, 6a ; M = Sr, 6b ). These heterometallic complexes were also obtained in the reaction of 1a and the mixed Ca and Sr complexes of β-diketonate-alkoxide [Mx(thd)y(OCH2CH2OCH3)2x?y] (M = Ca, x = 7, y = 6, 3 ; M = Sr, x = 5, y = 3, 4 ), respectively. In comparison, 1a reacts with the analogous [Ba(thd)(OCH2CH2OCH3)] ( 5a ) to yield a[Ba2Cu2(thd)4(OCH3)4(HOCH2CH2OCH3)2] species ( 8a .) The in situ prepared mixed-ligand Ba Compounds [Ba(thd)OR)] (R = CH2CH2OCH2CH2OCH3, ( 5b ); R = CH2CH2CH2OCH3 ( 5c ) react with the corresponding Cu complexes [Cu(thd)(OR)]n (R = CH2CH2OCH2CH2OCH3), n = 4 ( 1b ); R = CH2CH2OCH2CH2OCH3 ( 8b ); R = CH2CH2CH2OCH3 ( 8c ). However, [Cu(hfd)(OCH2CH2OCH3)]4 (hfd = 1,1,1,5,5,5,-hexafluoroacetylacetonate; 1e ) is converted in the presence of 2a–c to the simple metathesis products [M(hfd)2] (M = Ca, Sr, Ba) and [Cu(OCH2CH2OCH3)2]. Crystalline [Ba2Cu2(hfd)2(thd)2(OCH2CH2CH2OCH3)4(HOCH2CH2CH2OCH3)2] ( 9 ) was isolated from the reaction of 1a with in situ prepared [Ba((hfd)OCH2CH2CH2OCH3)] ( 5d ) in 2-, methoxyethanol. X-Ray crystallographic structure determinations are reported for 6a , 6b , 8b , and 8c .  相似文献   

11.
A straightforward method of synthesis of heteroleptic tin (II) alkoxides stabilized by one intramolecular coordination bond was developed. Addition of one equivalent of dimethylamino ethanol to diamide Sn(N(SiMe3)2)2 (5) yields alkoxy-amido derivative Sn(OCH2CH2NMe2)(N(SiMe3)2) (2). Further addition of alcohol leads to corresponding heteroleptic dialkoxides Sn(OCH2CH2NMe2)(OR) (R = Me (6), Et (7), iPr (8), tBu (9), Ph (10)). Catalytic activity of tin (II) compounds in polyurethane formation was tested.  相似文献   

12.
Reaction of (rac)‐3,3′‐bis(methoxymethyl)‐BINOL [H2(CH3OCH2)2BINO] with excess Ti(OiPr)4 and one equivalent of H2O in CH2Cl2 affords a trinuclear titanium(IV) complex [{(CH3OCH2)2BINO}Ti3(μ3‐O)(OiPr)6(μ2‐OiPr)2]. By dissolving it in dichloromethane and hexane and cooling to 0 °C, plate‐like pale yellow single crystals (monoclinic, P21/n, a = 12.605(3), b = 21.994(5), c = 19.090(4) Å, β = 92.764(8)°, V = 5286.2(19) Å3, T = 293(2) K) were obtained. Each oxygen atom at 2 or 2′ position of the (CH3OCH2)2BINO ligand bonds to only one titanium atom. There is no interaction between the third Ti atom and the two oxygen atoms of 3,3′‐bis(methoxymethyl)‐BINOLate.  相似文献   

13.
Synthesis and Characterization of New Intramolecularly Nitrogen‐stabilized Organoaluminium‐ and Organogallium Alkoxides The intramolecularly nitrogen stabilized organoaluminium alkoxides [Me2Al{μ‐O(CH2)3NMe2}]2 ( 1a ), Me2AlOC6H2(CH2NMe2)3‐2,4,6 ( 2a ), [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]2 ( 3a ) and [(S)‐Me2Al{μ‐OCH2CH(i‐Pr)NHCH2Ph}]2 ( 4 ) are formed by reacting equimolar amounts of AlMe3 and Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, (S)‐i‐PrNHCH(i‐Pr)CH2OH, or (S)‐PhCH2NHCH(i‐Pr)CH2OH, respectively. An excess of AlMe3 reacts with Me2N(CH2)2OH, Me2N(CH2)3OH, C6H2[(CH2NMe2)3‐2,4,6]OH, and (S)‐i‐PrNHCH(i‐Pr)CH2OH producing the “pick‐a‐back” complexes [Me2AlO(CH2)2NMe2](AlMe3) ( 5 ), [Me2AlO(CH2)3NMe2](AlMe3) ( 1b ), [Me2AlOC6H2(CH2NMe2)3‐2,4,6](AlMe3)2 ( 2b ), and [(S)‐Me2AlOCH2CH(i‐Pr)NH‐i‐Pr](AlMe3) ( 3b ), respectively. The mixed alkyl‐ or alkenylchloroaluminium alkoxides [Me(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 6 ) and [{CH2=C(CH3)}(Cl)Al{μ‐O(CH2)2NMe2}]2 ( 8 ) are to obtain from Me2AlCl and Me2N(CH2)2OH and from [Cl2Al{μ‐O(CH2)2NMe2}]2 ( 7 ) and CH2=C(CH3)MgBr, respectively. The analogous dimethylgallium alkoxides [Me2Ga{μ‐O(CH2)3NMe2}]2 ( 9 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NH‐i‐Pr}]n ( 10 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)NHCH2Ph}]n ( 11 ), [(S)‐Me2Ga{μ‐OCH2CH(i‐Pr)N(Me)CH2Ph}]n ( 12 ) and [(S)‐Me2Ga{μ‐OCH2(C4H7NHCH2Ph)}]n ( 13 ) result from the equimolar reactions of GaMe3 with the corresponding alcohols. The new compounds were characterized by elemental analyses, 1H‐, 13C‐ and 27Al‐NMR spectroscopy, and mass spectrometry. Additionally, the structures of 1a , 1b , 2a , 2b , 3a , 5 , 6 and 8 were determined by single crystal X‐ray diffraction.  相似文献   

14.
Niobium isopropoxide, Nb(OiPr)5, is an attractive precursor of simple and complex niobium oxides in sol-gel technology. This compound cannot, unfortunately, be obtained by alcohol interchange starting from linear chain homologues such as Nb(OMe)5 or Nb(OEt)5. The equilibrium in the latter reaction favours formation of mixed-ligand complexes, [Nb2(OR)2(OiPr)8], R = Me, Et. In particular, [Nb2(OMe)2(OPri)8] (1) has been isolated in high yield from repeated treatment of Nb2(OMe)10 with excess of isopropanol. The X-ray single crystal study reveals a dinuclear structure containing a pair of edge-sharing octahedra with methoxide ligands in the bridging position. Infrared (IR) and mass spectroscopy (MS) studies confirmed the incomplete ligand substitution. The 1H-NMR spectra suggest equilibrium between different molecular forms in solution. Solvothermal interaction of 1 with La chips in toluene/isopropanol media results in formation of a mixture of LaNb2(OiPr)13 and La2Nb44−O)4(OH)2(μ−OiPr)8(OiPr)8 (2). Electronic Supplementary Material The online version of this article (doi: ) contains supplementary material, which is available to authorised users.  相似文献   

15.
Solvatothermal syntheses have been exploited to effect the isolation of three novel polyoxoalkoxometalate clusters, [{Fe(OH)(CH3CN)2} Fe6OCl6{(OCH2)3CCH2OH}4] (1), [Fe10O2Cl8{(OCH2)3CCH2CH3}6] (2), and [(VO)2Fe8O2Cl6{(OCH2)3CCH2CH3}6] (3). The structure of 1 may be described as a hexametalate core {Fe6OCl6}10+, consisting of a octahedral arrangement of chloride ligands encasing an octahedron of six Fe(III) sites, with a central oxo group. The remaining four coordination sites at each octahedral iron center are occupied by doubly bridging oxygen donors from the trisalkoxo ligands. One triangular face of this substructure, defined by three oxygen atoms, from three adjacent trisalkoxo ligands, is capped by the {Fe(OH)(CH3CN)2}2+ subunit. The structure of 2 is based on the decametalate core of edge-sharing octahedra. The eight peripheral Fe(III) sites of the cluster bond to four oxygen donors from the trisalkoxo ligands, a terminal Cl ligand, and one of the 6-oxo groups. The two central iron sites are linked to four oxygen donors from the trisalkoxo ligands and to both of the 6-oxo groups. Cluster 3 is structurally related to 2 with two {FeCl}2+ units replaced by {VO}2+ groups.  相似文献   

16.
Hydrolysis of Ti(OR)4 (R = Et, i Pr, n Bu) at various concentrations of titanium alkoxides and ratios h = [H2O] /[Ti(OR)4] is studied in alcoholic medium by means of calorimetry, electron microscopy, SAXS, and chemical analysis. The measured values for heat of hydrolysis of Ti(OR)4 by excess water (– H h ) at 298.15 K comprise 14.2, 64.9, 19.3 kJ/mol for R = Et, R = Et, i Pr, n Bu respectively. – H h increases drastically in the region of 0h ratio. In the solid hydrolysis product with the composition TiO x (OR)4–2x ·y ROH, both x and y increase with increase of Ti(OR)4 concentration in solution. Bushy network first formed in solution as a result of hydrolysis gradually structures with formation of well-shaped spherical particles with diameters 0.2m. SAXS curves analysis in the range of scattering vector values s = 0.07–4.26 nm–1 for Ti(OBu)4 hydrolysis products allows us to suggest their multilevel nature. Speculations on the structure of titanium oxobutoxide were made on the basis of the well-known structural data for crystalline first hydrolysis products of Ti(OEt)4 and Ti(O i Pr)4. It is suggested to perform hydrolysis of Ti(OBu)4 with addition of water in two steps which allows us to decrease the rate of the solid precipitate formation, to regulate particles morphology in a wide range and to obtain well-shaped spherical species more than one micron in size. The influence of the powder size distribution on the grain growth during ceramic sintering is discussed.  相似文献   

17.
Reaction of Ti(OPri)4 with 2-methyl-2,4-pentanediol [HOGOH, where G = CMe2CH2CH(Me)] in 1?:?3 M ratio under reflux afforded the monomeric [Ti(OGO)(OGOH)2] (1), which on further reactions with [Al(OPri)3] or [Nb(OPri)5] in 1?:?1 and 1?:?2 M ratios afforded heterometallic derivatives, [Ti(OGO)3{M(OPri)n?2}] and [Ti(OGO)3{M(OPri)n?1}2] [where M = Al (n = 3), Nb (n = 5)], respectively. Similar reactions of Zr(OPri)4?PriOH with a number of glycols [HOGOH, where G = CH(Me)CH(Me), CMe2CMe2, CMe2CH2CH(Me)] yielded dimeric [Zr2(OGO)2(OGOH)4]. [Zr2(OGO)6{M(OPri)n?2}2] and [Zr2(OGO)4(OGOH)2M(OPri)n?2] [M = Al (n = 3), Ti (n = 4), Nb (n = 5)] were prepared by 1?:?2 and 1?:?1 reactions, respectively, of [Zr2(OGO)2(OGOH)4] with Al(OPri)3, Ti(OPri)4, or Nb(OPri)5. Surprisingly, a 1?:?2 reaction of [VO(OPri)3] with 2,2-diethyl-1,3-propanediol in benzene followed a different reaction and produced a neutral tetranuclear derivative [V4(O)4(μ-OCH2CEt2CH2O)2(OCH2CEt2CH2O)4] (18). All of these derivatives were characterized by elemental analysis, molecular weight measurements, FT-IR, and 1H NMR (and wherever possible, by 27Al or 51V NMR) spectroscopic studies. The derivatives [Zr2(OCMe2CH2CH(Me)O)2(OCMe2CH2CH(Me)OH)4] (9 and 18) were additionally characterized by single-crystal X-ray structure analysis.  相似文献   

18.
Addition of one equivalent of LiN(i-Pr)2 or LiN(CH2)5 to carbodiimides, RN=C=NR [R=cyclohexyl (Cy), isopropyl (i-Pr)], generated the corresponding lithium of tetrasubstituted guanidinates {Li[RNC(N R^′2)NR](THF)}2 [R=i-Pr, N R^′2=N(i-Pr)2 (1), N(CH2)5 (2); R=Cy, N R^′2=N(i-Pr)2 (3), N(CH2)5 (4)]. Treatment of ZrCl4 with freshly prepared solutions of their lithium guanidinates provided a series of bis(guanidinate) complexes of Zr with the general formula Zr[RNC(N R^′2)NR]2Cl2 [R=i-Pr, N R^′2=N(i-Pr)2 (5), N(CH2)5 (6); R=Cy, N R^′2=N(i-Pr)2 (7), N(CH2)5 (8)]. Complexes 1, 2, 5-8 were characterized by elemental analysis, IR and ^1H NMR spectra. The molecular structures of complexes 1, 7 and 8 were further determined by X-ray diffraction studies.  相似文献   

19.
Frech  C. M.  Llamazares  A.  Alfonso  M.  Schmalle  H. W.  Berke  H. 《Russian Chemical Bulletin》2004,53(5):1116-1120
The reaction of [Re(NO)2(PR3)2][BArF 4] (R = cyclo-C6H13 (1a), Pri (1b); [BArF 4] = [B(3,5-(CF3)2C6H3)4]) with phenylacetylene in the presence of a non-nucleophilic base, like 2,6-bis(tert-butyl)pyridine (BTBP) or ButOK, affords the phenylethynyl complexes [Re(CCPh)(NO)2(PR3)2] (R = cyclo-C6H13 (2a); Pri (2b)) in moderate yields. In the absence of a base, complexes 1a and 1b are transformed into the compounds [Re(CCPh)(CH=C(Ph)ONH)(NO)(PR3)2][BArF 4] (3a and 3b, respectively). The structure of complex 3a was confirmed by X-ray diffraction analysis. The latter reaction is proposed to be initiated by deprotonation of the terminal alkyne H atom by the bent nitrosyl ligand followed by the subsequent 1,3-dipolar addition of the ReN(H)O moiety to phenylacetylene.  相似文献   

20.
Diamagnetic [Ni(i-Bu2PS2)2] compound (I) in ethanol reacts with 2,2"-bipyridine or pyrazine to give the paramagnetic complexes [Ni(2,2"-Bipy)(i-Bu2PS2)2] (II), [Ni(Pz)2(i-Bu2PS2)2] (III), and [Ni(Pz)(i-Bu2PS2)2] n (IV) (eff= 2.91–3.12 B). Single crystals of IIwere grown for X-ray diffraction study. The crystals are monoclinic, a= 14.669(3) Å, b= 19.693(4) Å, c= 12.155(2) Å, = 107.51(3)°, V= 3348(1) Å3, Z= 4; calcd= 1.257 g/cm3, space group P21/c. The structure is built from monomeric molecules. The coordination polyhedron of the Ni atom is a distorted octahedron formed by four S atoms of two bidentate chelating i-Bu2PS 2ligands and by two N atoms of bidentate cyclic 2,2"-Bipy. Preliminary data for complexes IIIand IVindicate that they also contain an octahedral NiN2S4fragment. The structures of complexes I(square planar) and ofIIIV(octahedral) were confirmed by data from electron spectroscopy. Electronic absorption spectra were used to determine the rankings of the i-Bu2PS 2ions and Pz on a spectrochemical scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号