首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Based on the non-volatility of room temperature ionic liquids (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) IL was employed as an advantageous extraction solvent for high temperature headspace liquid-phase microextraction (LPME) of chloroanilines in environmental water samples. At high temperature of 90 degrees C, 4-chloroaniline, 2-chloroaniline, 3,4-dichloroaniline, and 2,4-dichloroaniline were extracted into a 10 microl drop of [C4MIM][PF6] suspended on the needle of a high-performance liquid chromatography (HPLC) microsyringe held at the headspace of the samples. Then, the IL was injected directly into the HPLC system for determination. Parameters related to LPME were optimized, and high selectivity and low detection limits of the four chlorinated anilines were obtained because the extraction was performed at high temperature in headspace mode and the very high affinity between IL and chlorinated anilines. The proposed procedure was applied for the analysis of the real samples including tap water, river water and wastewater samples from a petrochemical plant and a printworks, and only 3,4-dichloroaniline was detected in the printworks wastewater at 88.2 microg l(-1) level. The recoveries for the four chlorinated anilines in the four samples were all in the range of 81.9-99.6% at 25 microg l(-1) spiked level.  相似文献   

2.
In this paper, a novel method for the determination of chloroform in drinking water has been described. It is based on liquid-phase microextraction (LPME) and gas chromatography-mass spectrometry (GC-MS). Extraction conditions such as solvent selection, organic solvent dropsize, stirring rate, content of NaCl and extraction time were found to have significant influence on extraction efficiency. The optimized conditions were 1.5 microl xylene, 20 min extraction time at 400 rpm stirring rate without NaCl addition. The linear range was 1.0 - 100 microg l(-1) for chloroform. The limit of detection (LOD) was 1.0 microg l(-1); and relative standard deviation (RSD) at the 30 microg l(-1) level was 2.9%. Tap water samples from a laboratory were successfully analyzed using the proposed method. The relative recovery of spiked water samples was 104%.  相似文献   

3.
Myung SW  Yoon SH  Kim M 《The Analyst》2003,128(12):1443-1446
An automated LPME device for a dynamic LPME method was manufactured and its extraction efficiency was tested using spiked urine samples. The developed home-made LPME device was a programmable automated syringe dispenser to overcome deteriorating precision and difficulties in manually manipulating the plunger repeatedly. To establish the optimum parameters for benzene ethylamines, the effects of sampling volume, solvent volume, pH, salt-effect, choice of solvents, plunger speed, and number of samplings were investigated. Good repeatabilities for the extraction of mephentermine, ephedrine, methoxyphenamine, selegiline, and bupropion were obtained and the RSD values were 2.4, 1.9, 1.3, 1.6 and 1.5% at a concentration of 3 microg mL(-1) in spiked urine samples, respectively. The limit of detection was below 0.05 microg mL(-1) for the investigated drugs. This developed device for LPME analysis gave good validation results and improved convenience.  相似文献   

4.
A simple and efficient liquid-phase microextraction (LPME) technique using a supported liquid hollow fiber membrane, in conjunction with gas chromatography-electron capture detector has been developed for extraction and determination of trihalomethanes (THMs) in water samples. THMs were extracted from water samples through an organic extracting solvent impregnated in the pores and filled inside the porous hollow fiber membrane. Our simple conditions were conducted at 35 degrees C with no stirring and no salt addition in order to minimize sample preparation steps. Parameters such as types of hollow fiber membranes, extracting solvents and extraction time were studied and optimized. The method exhibited enrichment factors ranged from 28- to 62-fold within 30 min extraction time. The linearity of the method ranged from 0.2 to 100 microg l(-1). The limits of detection were in the low microg l(-1) level, ranging between 0.01 and 0.2 microg l(-1). The recoveries of spiked THMs at 5 microg l(-1) in water were between 98 and 105% with relative standard deviations (RSDs) less than 4%. Furthermore, the method was applied for determination of THMs in drinking water and tap water samples was reported.  相似文献   

5.
Room temperature ionic liquids (RTILs) were used as extraction solvent in liquid-phase microextraction (LPME) coupled with liquid chromatography. Using 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) as extraction solvent, some parameters related to LPME of 4-nonylphenol (4-NP) and 4-tert-octylphenol (4-t-OP) were optimized. Although [C6MIM][PF6] can suspend a much larger volume of drop on the needle of the microsyringe than the conventional solvents such as 1-octanol and carbon tetrachloride, the method sensitivity was analyte dependent because of the different partition coefficients and the relatively large viscosity of [C6MIM][PF6]. The proposed procedure has a detection limit and enrichment factor of 0.3 microg l(-1) and 163 for 4-NP, and 0.7 microg l(-1) and 130 for 4-t-OP, respectively. Aqueous samples including tap water, river water, and effluent from sewage treatment plant were analyzed by the proposed method and the recoveries at 10 microg l(-1) spiked level were in the range of 90-113%.  相似文献   

6.
肖小华  尹怡  胡玉玲  李攻科 《色谱》2007,25(2):234-237
建立了液相微萃取-高效液相色谱联用(LPME-HPLC)测定爽肤水中痕量的雌三醇、雌二醇、炔雌醇和雌酮的分析方法,研究了萃取溶剂种类、接受相体积、搅拌速度、萃取时间等对萃取效率的影响。结果表明,该方法对4种雌激素的富集倍数可达到247~343倍,方法的线性范围为1~200 μg/L,检出限为0.4~1.0 μg/L,6次平行测定的相对标准偏差为3.6%~7.3%,爽肤水中的加标回收率为101.2%~114.9%。方法简单快速、灵敏度高、环境友好,满足痕量雌激素分析的要求。  相似文献   

7.
An analytical method using pentafluorobenzyl bromide (PFBB) derivatization and gas chromatography/mass spectrometry (GC/MS) has been applied to identify and quantify chloro-, bromo- and dichlorophenols in air, water and sediment samples. Phenols in air sample were collected with a PS-2 Sep-PAK cartridge, and eluted with 2-propanol. For water and sediment samples, liquid-liquid extraction with dichloromethane was carried out, and the solvent was exchanged to 2-propanol. The phenols in the solution reacted with PFBB to form the corresponding pentafluorobenzyl esters. After extracting the derivatives into hexane, the determination was carried out by GC/MS with selected-ion monitoring. The detection limits of phenols in air, water and sediment were 0.0033 - 0.0073 microg/m3, 0.0066 - 0.0147 microg/L and 0.33 - 0.73 microg/kg, respectively. More than 90% recoveries of the halogenated phenols were obtained from real environmental samples spiked by the halogenated phenols. The three isomers of mono-chlorophenols were detected in sediment samples in the range of 5.2 - 9.2 microg/kg in wet weight basis.  相似文献   

8.
Liquid phase microextraction with back extraction (LPME/BE) combined with high-performance liquid chromatography (HPLC) was studied for the determination of a variety of phenols in water samples. The target compounds were extracted from 2-ml aqueous sample adjusted to pH 1 (donor solution) through a microliter-size organic solvent phase (400-microl n-hexane), confined inside a small PTFE ring, and finally into a 1-microl basic aqueous acceptor microdrop suspended inthe aforementioned solvent phase from the tip of a microsyringe needle. After extracting for a prescribed time, the microdrop was taken back into the syringe and directly injected into an HPLC for detection. Factors relevant to the extraction procedure were studied. At the optimized extraction conditions, a large enrichment factor (more than 100-fold) can be achieved for most of the phenols within 35 min. The detection limit range was 0.5-2.5 microg/l for different analytes in aqueous samples. The results demonstrate the suitability of the LPME/BE approach to the analysis of polar compounds in aqueous samples.  相似文献   

9.
Summary Analytical methods for the determination in environmental samples, of some selected Polycyclic Aromatic Hydrocarbons (PAH's), which are included on the EPA Priority Pollutant list, have been developed and evaluated. The methodology involves the extraction of PAH's from water samples by solvent extraction with dichloromethane. Solid samples were ultrasonically extracted with acetone/hexane and the extract was cleaned up on a silica gel/alumina column. The concentrated and cleaned up extracts were analysed by HPLC on a polymeric C18 column using a gradient of acetonitrile/water as the mobile phase and fluorescence detection. Typical detection limits lie in the range of 1–30 ng ml–1 of the analytes, but after sample pretreatment detection limits of 10–300 ng l–1 were obtained. The extraction, clean-up and HPLC methodology was applied to the determination of selected PAH's in coal washings samples and the method was validated by the quantification of PAH's in a natural contaminated and a spiked sediment.  相似文献   

10.
Trace amounts of pesticides in soil were determined by liquid-phase microextraction (LPME) coupled to gas chromatography-mass spectrometry (GC-MS). The technique involved the use of a small amount (3 microl) of organic solvent impregnated in a hollow fiber membrane, which was attached to the needle of a conventional GC syringe. The organic solvent was repeatedly discharged into and withdrawn from the porous polypropylene hollow fiber by a syringe pump, with the pesticides being extracted from a 4 ml aqueous soil sample into the organic solvent within the hollow fiber. Aspects of the developed procedure such as organic solvent selection, extraction time, movement pattern of plunger, concentrations of humic acid and salt, and the proportion of organic solvent in the soil sample, were optimized. Limits of detection (LOD) were between 0.05 and 0.1 microg/g with GC-MS analysis under selected-ion monitoring (SIM). Also, this method provided good precision ranging from 6 to 13%; the relative standard deviations were lower than 10% for most target pesticides (at spiked levels of 0.5 microg/g in aqueous soil sample). Finally, the results were compared to those achieved using solid-phase microextraction (SPME). The results demonstrated that LPME was a fast (within 4 min) and accurate method to determine trace amounts of pesticides in soil.  相似文献   

11.
A sample pretreatment method for the determination of 18 chlorophenols (CPs) in aqueous samples by derivatization liquid-phase microextraction (LPME) was investigated using gas chromatography–mass spectrometry. Derivatization reagent was spiked into the extraction solvent to combine derivatization and extraction into one step. High sensitivity of 18 CPs derivatives could be achieved after optimization of several parameters such as extraction solvent, percentage of derivatization reagent, extraction time, pH, and ionic strength. The results from the optimal method showed that calibration ranging from 0.5 to 500 μg L−1 could be achieved with the RSDs between 1.75% and 9.39%, and the limits of detection (LOD) are ranging from 0.01 to 0.12 μg L−1 for the CPs. Moreover, the proposed LPME method was compared with solid-phase microextraction (SPME) coupled with on-fiber derivatization technique. The results suggested that using both methods are quite agreeable. Furthermore, the recoveries of LPME evaluated by spiked environmental samples ranged from 87.9% (3,5-DCP) to 114.7% (2,3,5,6-TeCP), and environmental water samples collected from the Pearl River were analyzed with the optimized LPME method, the concentrations of 18 CPs ranged from 0.0237 μg L−1 (3,5-DCP) to 0.3623 μg L−1 (2,3,6-TCP).  相似文献   

12.
Hou L  Wen X  Tu C  Lee HK 《Journal of chromatography. A》2002,979(1-2):163-169
We described a new method for the enrichment of basic drugs present in water samples via liquid-phase microextraction (LPME) combined with on-column stacking in capillary electrophoresis. Two steps were employed to enhance the detection sensitivity of four amino alcohols. The analytes were first extracted from aqueous sample (donor solution) that were adjusted to basic through a thin layer of 1-octanol entrapped within the pores of a polypropylene hollow fiber, and then into a 5-microl acidic acceptor solution inside the hollow fiber. The extract was then further enriched through on-column stacking in capillary electrophoresis. With this two-step enrichment procedure, the method provided 72-110-fold preconcentration of the target amino alcohols. The limits of detection were 0.08-0.5 microg/ml. Relative standard deviation (n=6) ranged between 4.3 and 6.9% for the studied drugs utilizing 2-amino-1-phenylethanol as internal standard. The extraction of amino alcohols in spiked urine samples was evaluated using the developed procedure.  相似文献   

13.
A rapid, sensitive and efficient liquid phase microextraction (LPME) method was developed to determine trace concentrations of some organophosphorus pesticides in water samples. This method combines liquid phase microextraction with gas chromatographic (GC) analysis in a simple and inexpensive apparatus involving very little organic solvent consumption. It involves exposing a floated drop of an organic solvent on the surface of aqueous solution in a sealed vial. Experimental parameters which control the performance of LPME such as type of organic solvent, organic solvent and sample volumes, sample stirring rate, sample solution temperature, salt addition and exposure time were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by the water samples spiked with organophosphorus pesticides. Using optimum extraction conditions, very low detection limits (0.01-0.04 μg L−1) and good linearities (0.9983 < r2 < 0.9999) were achieved. The LPME was performed for determination of organophosphorus pesticides in different types of natural water samples and acceptable recoveries (96-104%) and precisions (3.5 < R.S.D.% < 8.9) were obtained. The results suggested that the newly proposed LPME method is a rapid, accurate and effective sample preparation method and could be successfully applied for extraction and determination of organophosphorus pesticides in water samples.  相似文献   

14.
Dynamic liquid-phase microextraction (LPME) controlled by a programmable syringe pump was evaluated for extracting pesticides in water prior to GC-MS analysis. A conventional microsyringe with a 1.3-cm length of hollow fiber attached to its needle was connected to a syringe pump to perform the extraction. The microsyringe was used as both the microextraction device as well as the sample introduction device for GC-MS analysis. The attached hollow fiber served as the "holder" and protector" of 3 microl of organic solvent. The solvent was repeatedly withdrawn into and discharged from the hollow fiber by the syringe pump. Pesticides were extracted from 4-ml water samples into the organic solvent impregnated in the hollow fiber. The effects of organic solvents, plunger movement pattern, agitation and extraction time were investigated. Good repeatabilities of extraction performance were obtained, with the RSD values ranging from 3.0% (alachlor) to 9.8% (4-chlorophenol) for the 14 pesticides; most RSD values were under 5.0%. The method provided a 490-fold preconcentration of the target pesticides. The limits of detection were in the range of 0.01-5.1 microg/l (S/N = 3) in the GC-MS selected ion monitoring mode. In addition, sample clean-up was achieved during LPME because of the selectivity of the hollow fiber, which prevented undesirable large molecules from being extracted. A slurry sample (mixture of 40 mg soil/ml of water) containing seven pesticides was extracted using this method which also gave good linearity and precision (most RSDs <7.0%, n = 3).  相似文献   

15.
A simple, efficient and environmentally friendly analytical methodology is proposed for extracting and preconcentrating pyrethroids from water samples prior to gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS) analysis. Fourteen pyrethroids were selected for this work: bifenthrin, cyfluthrin, λ-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, fenpropathrin, τ-fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin and tralomethrin. The method is based on ultrasound-assisted emulsification-extraction (UAEE) of a water-immiscible solvent in an aqueous medium. Chloroform was used as extraction solvent in the UAEE technique. Target analytes were quantitatively extracted achieving an enrichment factor of 200 when 20 mL aliquot of pure water spiked with pyrethroid standards was extracted. The method was also evaluated with tap water and river water samples. Method detection limits (MDLs) ranged from 0.03 to 35.8 ng L−1 with RSDs values ≤3–25% (n = 5). The coefficients of estimation of the calibration curves obtained following the proposed methodology were ≥0.998. Recovery values were in the range of 45–106%, showing satisfactory robustness of the method for analyzing pyrethroids in water samples. The proposed methodology was applied for the analysis of river water samples. Cypermethrin was detected at concentration levels ranging from 4.94 to 30.5 ng L−1.  相似文献   

16.
A method has been developed for the determination of zinc pyrithione (ZnPT) in environmental water samples using monolithic reversed-phase silica columns for rapid on-line large volume solid phase extraction in tandem with on-line matrix removal using sacrificial strong anion exchange (SAX) columns. This is coupled with reversed-phase liquid chromatography with atmospheric pressure chemical ionisation mass spectrometric detection. Limits of detection in spiked river water samples, using a 200 mL preconcentration volume, were determined as 18 ng L(-1), with a limit of quantitation of 62 ng L(-1). The percentage recovery from spiked river water was found to be 72+/-9 (n=3 extractions), whilst overall method precision, following 10 repeat complete analyses was found to be 27% RSD at 1 microg L(-1). Linearity was determined over the concentration range of 0.25-10 microg L(-1) and the calculated regression coefficient was R(2)=0.9802. The method was used to investigate the environmental fate of zinc pyrithione in waters and its partition coefficient between sediment and water phases.  相似文献   

17.
Two modes of liquid-phase microextraction (LPME), static and semi-automated dynamic, have been developed for the HPLC analysis of polycyclic aromatic hydrocarbons. In static LPME, a small drop (3 microl) of organic solvent was held at the tip of a microsyringe needle and exposed to the sample containing the analytes, permitting extraction to occur. In semi-automated dynamic LPME, a syringe pump was used to automate the repetitive procedure of filling a microsyringe barrel that functioned as a microseparatory funnel, with fresh aliquots of sample, and expelling them after extraction. The factors influential to both techniques such as the type of organic solvent, extraction time, sampling volume, number of samplings, salt concentration and temperature were investigated. Static LPME provided high enrichment (60- to 180-fold) and simplicity. The analytical data exhibited a relative standard deviation range of 4.7-9.0%. Dynamic LPME provided higher (>280-fold) enrichment within nearly the same extraction time (approximately 20 min) and better precision (< or = 6.0%). Both methods allow the detection of polycyclic aromatic hydrocarbons at microg/l levels in water by HPLC. Water samples collected from two rivers were analyzed using the methods, respectively. The results demonstrated that both modes of LPME were fast, simple and accurate.  相似文献   

18.
A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L−1 ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n = 7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples.  相似文献   

19.
A broad range of organic compounds is recognized as environmentally relevant for their potential adverse effects on human and ecosystem health. This method was developed to better determine the distribution of 61 compounds that are typically associated with industrial and household waste as well as some that are toxic and known (or suspected) for endocrine-disrupting potential extracted from environmental sediment samples. Pressurized liquid extraction (PLE) coupled with solid-phase extraction (SPE) was used to reduce sample preparation time, reduce solvent consumption to one-fifth of that required using dichloromethane-based Soxhlet extraction, and to minimize background interferences for full scan GC/MS analysis. Recoveries from spiked Ottawa sand, commercially available topsoil, and environmental stream sediment, fortified at 4-720 μg per compound, averaged 76 ± 13%. Initial method detection limits for single-component compounds ranged from 12.5 to 520 μg/kg, based on 25 g samples. Results from 103 environmental sediment samples show that 36 out of 61 compounds (59%) were detected in at least one sample with concentrations ranging from 20 to 100,000 μg/kg. The most frequently detected compound, beta-sitosterol, a plant sterol, was detected in 87 of the 103 (84.5%) environmental samples with a concentration range 360-100,000 μg/kg. Results for a standard reference material using dichloromethane Soxhlet-based extraction are also compared.  相似文献   

20.
This study investigated the feasibility of applying liquid-phase microextraction combined with gas chromatography-mass spectrometry (GC-MS) to determine polychlorinated biphenyls (PCBs) in blood plasma. An efficient and simple extraction technique has been developed for the enrichment of PCBs from human blood plasma samples using single-step liquid-phase microextraction (LPME) in conjunction with a hollow fibre membrane (HFM). An eight PCB congener mixture was spiked into 2.5 ml of blood plasma, and the solution was then adjusted to pH 10.5 with a salinity of 20% (w/v) prior to making the total volume to 5 ml with ultrapure water. The porous HFM, filled with 3 microl of organic solvent, was then immersed into the solution, which was continuously agitated at 700 rpm for 30 min. Extract (1 microl) containing the pre-concentrated analytes was then injected into a GC-MS without further pre-treatment. Using an optimised extraction procedure, a large enrichment factor of the analytes, i.e. up to 241-fold was achieved in 30 min. The procedure resulted in a relative standard deviation of < 11% (n = 6), and a linear calibration range from 2.5 to 150 microg/l (r > 0.999), and detection limits between 0.07 and 0.94 microg/l, respectively. To demonstrate the feasibility of the procedure, PCB concentrations were determined in actual blood samples collected from the local population in Singapore using the optimised LPME technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号