首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
On Dialkali Metal Dichalcogenides β-Na2S2, K2S2, α-Rb2S2, β-Rb2S2, K2Se2, Rb2Se2, α-K2Te2, β-K2Te2 and Rb2Te2 The first presentation of pure samples of α- and β-Rb2S2, α- and β-K2Te2, and Rb2Te2 is described. Using single crystals of K2S2 and K2Se2, received by ammonothermal synthesis, the structure of the Na2O2 type and by using single crystals of β-Na2S2 and β-K2Te2 the Li2O2 type structure will be refined. By combined investigations with temperature-dependent Guinier-, neutron diffraction-, thermal analysis, and Raman-spectroscopy the nature of the monotropic phase transition from the Na2O2 type to the Li2O2 type will be explained by means of the examples α-/β-Na2S2 and α-/β-K2Te2. A further case of dimorphic condition as well as the monotropic phase transition of α- and β-Rb2S2 is presented. The existing areas of the structure fields of the dialkali metal dichalcogenides are limited by the model of the polar covalence.  相似文献   

2.
Preparations and Properties of Tris(perfluoroalkyl) Arsenic and Antimony(III, V) Compounds As(Rf)3 and Sb(Rf)3 (Rf?C2F5, C4F9, C6F13) are prepared in good yields by the polar reactions of AsCl3 and SbCl3 with bis(perfluoroalkyl) cadmium compounds as colourless liquids or solids. The oxidation of As(C2F5)3 and Sb(C2F5)3 with XeF2 gives the difluorides M(C2F5)3F2 (M?As, Sb). As(C2F5)3Cl2 is prepared by chlorination of As(C2F5)3 in the presence of AlCl3, while Sb(C2F5)3Cl2 is formed in the reaction of Sb(C2F5)3F2 with (CH3)3SiCl. During the reaction of M(C2F5)3F2 with (CH3)3SiBr 19F-NMR spectroscopic evidence is found for M(C2F5)3 Br2. The thermal decompositions of M(C2F5)3F2 mainly yield C4F10 and M(C2F5)F2, while the thermal decompositions of M(C2F5)3Cl2 yield M(C2F5)2Cl and C2F5Cl. The properties and spectroscopic data of the new compounds are described.  相似文献   

3.
The Courses of the Ammonolyses of the Ammonium Hexafluorometalates of Aluminum, Gallium, and Indium, (NH4)3MF6 (M = Al, Ga, In) The courses of the ammonolysis reactions of the ammonium hexafluorometalates (NH4)3MF6 (M = Al, Ga, In) were investigated with the aid of in‐situ powder diffractometry and differential thermal analysis. Under these conditions, the reaction of (NH4)3AlF6 with gaseous ammonia yields at about 360 °C AlF3 via the intermediates NH4AlF4, Al(NH3)2F3 and Al(NH3)F3. The ammonolysis of (NH4)3GaF6 produces GaN at about 400 °C. Depending upon the actual reaction conditions, the intermediates NH4GaF4 and Ga(NH3)F3 as well as their ammonia adducts NH4GaF4 · NH3 and Ga(NH3)2F3 and the amide‐ammoniate Ga(NH3)(NH2)F2 are observed. In the case of (NH4)3InF6 the intermediates (NH4)3InF6 · NH3 and In(NH3)F3 may exist; there are also indications for the reduction of In(III) to In(I) and for the existence of In(NH3)2F and InF as products of the ammonolysis of (NH4)3InF6.  相似文献   

4.
The cloud points (CPs) of the copolymers 17R4 and L64 were first measured, and then the effects of salts ((NH4)3C6H5O7, K3C6H5O7) on 17R4 and L64 were researched. After finishing the work described above, the temperature (278.15, 283.15, and 288.15) K of aqueous two-phase systems was determined, which consist of 17R4-(NH4)3C6H5O7, 17R4-K3C6H5O7, L64-(NH4)3C6H5O7, and L64-K3C6H5O7. Finally, the liquid–liquid equilibrium (LLE) data of binodal curve and the tie line for 17R4-(NH4)3C6H5O7 aqueous two- phase systems (ATPSs) 17R4-K3C6H5O7 ATPSs, L64-(NH4)3C6H5O7 ATPSs, and L64-K3C6H5O7 ATPSs were obtained. Nonlinear fitting of the empirical equation was used for making the diagram. The results showed that the change in the size of the two-phase areas increases with the increase of temperature. The capacity of the salts to induce phase segregation follows the Hofmeister series, that is, K3C6H5O7?>?(NH4)3C6H5O7. In addition, the findings also showed that the phase separation ability of 17R4 is better than that of L64.  相似文献   

5.
Reactions of R4Sb2 (R = Me, Et) with (Me3SiCH2)3M (M = Ga, In) and Crystal Structures of [(Me3SiCH2)2InSbMe2]3 and [(Me3SiCH2)2GaOSbEt2]2 The reaction of (Me3SiCH2)3In with Me2SbSbMe2 gives [(Me3SiCH2)2InSbMe2]3 ( 1 ) and Me3SiCH2SbMe2. [(Me3SiCH2)2GaOSbEt2]2 ( 2 ) is formed by the reaction of (Me3SiCH2)3Ga with Et2SbSbEt2 and oxygen. The syntheses and the crystal structures of 1 and 2 are reported.  相似文献   

6.
A cobalt-poor or iron rich bicomponent mixture of Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 anode materials have been successfully prepared using simple, cost-effective, and scalable urea-assisted auto-combustion synthesis. The threshold limit of lower cobalt stoichiometry in CoFe2O4 that leads to impressive electrochemical performance was identified. The electrochemical performance shows that the Co0.9Fe2.1O4/Fe2O3 electrode exhibits high capacity and rate capability in comparison to a Co0.8Fe2.2O4/Fe2O3 electrode, and the obtained data is comparable with that reported for cobalt-rich CoFe2O4. The better rate performance of the Co0.9Fe2.1O4/Fe2O3 electrode is ascribed to its unique stoichiometry, which intimately prefers the combination of Fe2O3 with Co1−xFe2+xO4 and the high electrical conductivity. Further, the high reversible capacity in Co0.9Fe2.1O4/Fe2O3 and Co0.8Fe2.2O4/Fe2O3 electrodes is most likely attributed to the synergistic electrochemical activity of both the nanostructured materials (Co1−xFe2+xO4 and Fe2O3), reaching beyond the well-established mechanisms of charge storage in these two phases.  相似文献   

7.
Reactivity, in the solid state between Ag2S and Ag2CrO4, was investigated by DTA, XRD and IR methods. It was found that, according to a composition of an initial Ag2S/Ag2CrO4 mixture, the products of a reaction of Ag2S with Ag2 CrO4 can be: solid solution with Ag2CrO4 structure (Ag2Cr1–xSxO4) and AgCrO2; or solid solution Ag2Cr1–xSxO4, Ag2SO4, AgCrO2 and metallic silver; or Ag2S, β-Ag8S4O4, Ag, AgCrO2, Ag2SO4 and Ag2Cr1–xSxO4 solid solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Reactivity in the solid state between CoWO4 and some rare-earth metal tungstates RE2WO6 (RE = Sm, Eu, Gd) was investigated by the XRD method. Two families of new isostructural cobalt and rare-earth metal tungstates, Co2RE2W3O14 and CoRE4W3O16, were synthesized. The Co2RE2W3O14 phases are formed by heating in air the CoWO4 and RE2WO6 compounds mixed at the molar ratio 2:1, while the CoRE4W3O16 phases are synthesized at the molar ratio of CoWO4/RE2WO6 equals to 1:2. The Co2RE2W3O14 phases as well as the CoRE4W3O16 compounds crystallize in the orthorhombic system. The Co2RE2W3O14 and CoRE4W3O16 compound melt above 1150 °C. A melting manner of the Co2RE2W3O14 and CoRE4W3O16 compounds was determined in an inert atmosphere. The formation of CoWO4−x phase was observed during heating in an inert atmosphere.  相似文献   

9.
Bromoplumbates with One‐dimensional Polymeric and Isolated Anions: (Bzl4P)2[Pb3Br8], (Bzl4P)2[Pb3Br8(dmf)2], (Bzl4P)[PbBr3], (Bzl4P)2[PbBr4], and (Bzl4P)4[Pb2Br6][PbBr4] PbBr2 reacts with LiBr and (Bzl4P)(PF6) (Bzl = CH2C6H5) in acetone to form a series of bromoplumbate complexes with compositions and structures depending on the conditions of reaction and crystallization. While the anions in (Bzl4P)2[Pb3Br8] ( 1 ) and (Bzl4P)[PbBr3] ( 2 ) are one‐dimensional polymers with penta‐ and hexacoordinated Pb atoms, the metal atoms in the mono‐ and dinuclear complex anions of (Bzl4P)2[PbBr4] · 2acetone ( 3 · 2acetone) and (Bzl4P)4[Pb2Br6][PbBr4] ( 4 ) bind to four bromo ligands. From DMF as a solvent (Bzl4P)2[Pb3Br8(dmf)2] ( 1 b ) crystallizes with the same bromoplumbate structure as in 1 a , but with dmf ligands occupying the coordination sites vacant in 1 a . Upon radiation of compound 3 with ultraviolet light greenish yellow photoluminescence (emssion maximum at 547 nm) is observed. Crystallographic details see “Inhaltsübersicht”.  相似文献   

10.
On the refluxing ofM(II) oxalate (M=Mn, Co, Ni, Cu, Zn or Cd) and 2-ethanolamine in chloroform, the following complexes were obtained: MnC2O4·HOCH2CH2NH2·H2O, CoC2O4·2HOCH2CH2NH2, Ni2(C2O4)2·5HOCH2CH2NH2·3H2O, Cu2(C2O4)2·5HOCH2CH2NH2, Zn2(C2O4)2·5HOCH2CH2NH2·2H2O and Cd2(C2O4)2·HOCH2CH2NH2·2H2O. Following the reaction ofM(II) oxalate with 2-ethanolamine in the presence of ethanolammonium oxalate, a compound with the empirical formula ZnC2O4·HOCH2CH2NH2·2H2O1 was isolated. The complexes were identified by using elemental analysis, X-ray powder diffraction patterns, IR spectra, and thermogravimetric and differential thermal analysis. The IR spectra and X-ray powder diffraction patterns showed that the complexes obtained were not isostructural. Their thermal decompositions, in the temperature interval between 20 and about 900°C, also take place in different ways, mainly through the formation of different amine complexes. The DTA curves exhibit a number of thermal effects.  相似文献   

11.
Semi-empirical molecular orbital calculations were carried out for the compounds (C2H5)3As, (C2H5)3Ga and RAsH2 (R = C2H5, i-C3H7, i-C4H9, and t-C4H9) by using the CNDO/2-U program, and their capability of β-elimination reaction is compared on the basis of the torsion energy to the transition state, electrostatic interactions and orbital overlapping between the central atom and the β-hydrogen, and bond order of the metal-carbon, and carbon-hydrogen bond. In the comparison of (C2H5)3As with (C2H5)3Ga, we found that the β-elimination of (C2H5)3As could hardly be expected to take place in the thermal decomposition. The capability of β-elimination would be smaller in C2H5AsH2 than that in (C2H5)3As. Moreover when the ethyl group is replaced by a t-butyl group in RAsH2, the β-elimination reaction appears to become more difficult and a large possibility for a radical process is suggested.  相似文献   

12.
In this work we address the optimization of mixed conductivity in fluorite compounds based on zirconia. Phase relations of the new systems YbO1.5-NbO2.5-ZrO2, and CaO-NbO2.5-ZrO2 are presented. The limit of the cubic defect fluorite phase in YbO1.5-NbO2.5-ZrO2 closely resembles that of the system YO1.5-NbO2.5-ZrO2, whilst in CaO-NbO2.5-ZrO2 is narrow extending to include composition Ca0.255Nb0.15Zr0.595O1.82 at 1500°C. The influence of dopant ion size, charge and composition on ionic conduction is assessed and parallels are drawn with the systems YO1.5-NbO2.5-ZrO2 and YO1.5-TiO2-ZrO2. Comparison of these results with published data on the Ti containing systems CaO-TiO2-ZrO2, GdO1.5-TiO2-ZrO2 shows that the highest mixed conducting compositions can only be offered in the system YO1.5-TiO2-ZrO2 out of all the systems here studied.  相似文献   

13.
The complexes [Pd(Me2PO2)2]3 and Pd(Me2AsO2)2 were prepared from the corresponding acids and palladium(II) acetate. Their structures were deduced by IR and NMR spectroscopy. Addition of pyridine and 2,2′‐bipyridine to [Pd(Me2PO2)2]3 gave the adducts Pd(Me2PO2)2py2 and Pd(Me2PO2)2bipy, which were characterized by 1H NMR spectroscopy. Addition of nicotinic acid and nicotinamide in water gave the adducts Pd(Me2PO2)2L2, whereas in methanol the adducts Pd(Me2PO2)2L were obtained. The cacodylate containing complex formed the adducts Pd(Me2AsO2)2py and Pd(Me2AsO2)2bipy1/2, which are unstable in CDCl3. Triphenylphosphine deoxygenated both Pd(Me2MO2)2 complexes, but the palladium(II) containing products could not be isolated. The expected Pd(Me2P–O)2 reacted further and gave many products, whereas the anticipated Pd(Me2As–O)2 did not bind triphenylphosphine.  相似文献   

14.
通过高温固相法对醋酸镧(C6H9O6La·xH2O)与高钼酸铵((NH46Mo7O24·4H2O)在一定条件下热解制备非Pt催化剂La2Mo2O7(La2O3-2MoO2)。进一步采用2种方法将La2Mo2O7与多壁碳纳米管(MWCNTs)进行复合,一种是将La2Mo2O7喷涂到MWCNTs表层之上得到La2Mo2O7/MWCNTs,另一种是将两者均匀混合掺杂得到La2Mo2O7@MWCNTs,再将上述2种复合材料应用于染料敏化太阳能电池对电极进行相应研究。通过扫描电子显微镜(SEM)表征了复合催化材料的微观形貌,X射线衍射(XRD)确定了微观结构。采用电流密度-光电压曲线、循环伏安,交流阻抗以及塔菲尔极化分析了材料的光电性能。实验结果表明在电解液I3-/I-中,基于La2Mo2O7/MWCNTs与La2Mo2O7@MWCNTs的对电极,相同的条件下在光电池中获得的光电转换效率分别为6.09%和4.84%,明显高于MWCNTs的3.94%和La2Mo2O7的0.87%。电极性能的提高可归因于La2Mo2O7复合催化剂相对大的比表面积和高导电性。  相似文献   

15.
Syntheses and Thermal Properties of Cluster Molecules, formed from Groups 11‐13‐16 Elements In the presence of PPh3, CuX (X = Cl, CH3COO) or AgOC(O)C6H5 and GaCl3 react in THF with S(SiMe3)2 or Se(SiMe3)2 to yield [Cu6Ga8Cl4S13(PPh3)6] ( 1 ), [Cu6Ga8Cl4Se13(PPh3)6] ( 2 ), [Ag6Ga8Cl4S13(PPh3)6] ( 4 ) and [Ag6Ga8Cl4Se13(PPh3)6] ( 5 ). The use of PnPr2Ph instead of PPh3 and subsequent layering with n‐hexane leads to the formation of the cluster [Cu6Ga8Cl4Se13(PnPr2Ph)12] ( 3a , 3b ). Reaction of CuCl, GaCl3 and PnPr3 with Se(SiMe3)2 in THF results in the crystallisation of the ionic cluster (HPnPr3)2[Cu2Ga4Cl4Se6(PnPr3)4] ( 6 ). The structures of 1 — 6 were determined by X‐ray single crystal structure analysis. Thermogravimetric measurements of the cluster molecules and powder diffraction patterns of the remaining powders reveal the potential use of them as single source precursor compounds for the synthesis of the related ternary solid state materials.  相似文献   

16.
Molybdenum(VI) and tungsten(VI) dioxodiazide, MO2(N3)2 (M=Mo, W), were prepared through fluoride–azide exchange reactions between MO2F2 and Me3SiN3 in SO2 solution. In acetonitrile solution, the fluoride–azide exchange resulted in the isolation of the adducts MO2(N3)2⋅2 CH3CN. The subsequent reaction of MO2(N3)2 with 2,2′‐bipyridine (bipy) gave the bipyridine adducts (bipy)MO2(N3)2. The hydrolysis of (bipy)MoO2(N3)2 resulted in the formation and isolation of [(bipy)MoO2N3]2O. The tetraazido anions [MO2(N3)4]2− were obtained by the reaction of MO2(N3)2 with two equivalents of ionic azide. Most molybdenum(VI) and tungsten(VI) dioxoazides were fully characterized by their vibrational spectra, impact, friction, and thermal sensitivity data and, in the case of (bipy)MoO2(N3)2, (bipy)WO2(N3)2, [PPh4]2[MoO2(N3)4], [PPh4]2[WO2(N3)4], and [(bipy)MoO2N3]2O by their X‐ray crystal structures.  相似文献   

17.
A method of calculation of average heat capacities of phase transformation products of complex oxides is suggested. The method takes into account the physical state of products and the increase in the heat capacities of products due to the change of entropy at a phase transformation. Average heat capacities of products formed in a congruous melting of compounds (YCuO2 and Y4Ba3O9), in an incongruous melting of compounds (Y2Cu2O5, BaCuO2, BaCu2O2, Y2BaCuO5, YBa2Cu3O7, YBa2Cu3O6) and in a decomposition in a crystalline state of compounds (Y2BaO4, Y2Ba2O5, Y2Ba4O7, Ba2CuO3, Ba3Cu5O8, YBa2Cu3.5O7.5, YBa2Cu4O8, YBa2Cu5O9) was estimated by using three methods.  相似文献   

18.
Chloroselenates with Di- and Tetravalent Selenium: 77Se-NMR-Spectra, Syntheses, and Crystal Structures of (PPh4)2SeCl6 · 2 CH2Cl2, (NMe3Ph)2SeCl6, (K-18-crown-6)2SeCl6 · 2 CH3CN, PPh4Se2Cl9, (NEt4)2Se2Cl10, (PPh4)2Se3Cl8 · CH2Cl2, and (PPh4)2Se4Cl12 · CH2Cl2 The title compounds were obtained from reactions of selenium and selenium tetrachloride with PPh4Cl, NEt4Cl, NMe3PhCl, or (K-18-crown-6)Cl in dichloromethane or acetonitrile. (PPh4)2Se3Cl8 · CH2Cl2 was also formed from GeSe, PPh4Cl and chlorine in acetonitrile. The 77Se-NMR spectra of the solutions show the presence of dynamical equilibria which, depending on composition, mainly contain SeCl2, SeCl4, Se2Cl2, SeCl62–, Se2Cl62–, and/or Se2Cl102–. Solutions of AsCl3 and (PPh4)2Se4 in acetonitrile upon chlorination with Cl2 or PPh4AsCl6 yielded (PPh4)2Se2Cl6, while (PPh4)2As2Se4Cl12 was the product after chlorination with SOCl2. According to the X-ray crystal structure analyses the ions SeCl62–, Se2Cl9, and Se2Cl102– have the known structures with octahedral coordination of the Se atoms. The structure of the Se3Cl82– ion corresponds to that of Se3Br82– consisting of three SeCl2 molecules associated via two Cl ions. (PPh4)2Se4Cl12 · CH2Cl2 is isotypic with the corresponding bromoselenate and contains anions in which three SeCl2 molecules are attached to a SeCl62– ion; there is a peculiar Se–Se interaction.  相似文献   

19.
Three cobalt(II)‐containing tungstophosphate compounds, Na8Li8Co5[Co5.5(H2O)19P8W48.5O184] ? 60 H2O ( 1 ), K2Na4Li11Co5[Co7(H2O)28P8W48O184]Cl ? 59 H2O ( 2 ), and K2Na4LiCo11[Co8(H2O)32P8W48O184](CH3COO)4Cl ? 47 H2O ( 3 ), have been synthesized and characterized by IR spectroscopy, thermogravimetric analysis, elemental analyses, and magnetic measurements. The pH value impacts the formation of distinct cobalt‐linked frameworks. The cyclic cavity of the polyanion accommodates 5.5, 7, and 8 cobalt ions in 1 , 2 , and 3 , respectively. In compounds 1 and 2 , each {Co5.5P8W48} and {Co7P8W48} fragment links to four others through multiple {Co‐O‐W} coordination bonds to generate a two‐dimensional network. Compound 3 can be considered as a 3D network based on the {Co‐O‐W} coordination bonds and the {Co3(CH3COO)2(H2O)10} linkers between the {P8W48} fragments. Interestingly, acetate ligands have been employed to form the {Co3(CH3COO)2(H2O)10} unit, thereby inducing the construction of a 12‐connected framework. To the best of our knowledge, compound 3 contains the largest‐ever number of cobalt ions in a {P8W48}‐based polyoxometalate when counterions are taken into account and the {P8W48} unit shows the highest number of connections thanks to the carboxyl bridges. The UV/Vis diffuse reflectance spectra of these powder samples indicate that the corresponding well‐defined optical absorption associated with Eg can be assessed at 2.58, 2.48, and 2.73 eV and reveal the presence of an optical band gap. The photocatalytic H2 evolution activities of these {P8W48}‐based compounds are evaluated.  相似文献   

20.
Phosphaneimine and Phosphoraneiminato Complexes of Magnesium. The Crystal Structures of [MgBr1,25I0,75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2], [Mg2I2(Me3SiNPMe2CH2)(Me3SiNPMe2CH2CH(Me)O)(OEt2)], and [MgBr(NPMe3)]4 · C7H8 By reactions of the silylated phosphaneimine Me3SiNPMe3 with the Grignard reagents EtMgBr and MeMgI, respectively, the carbanionic phosphoraneiminato derivatives [XMg(CH2PMe2NSiMe3)]n (X ? Br, I) can be isolated as main products. The by-products of these reactions, [MgBr1.25I0.75(Me3SiNPMe3)(OEt2)], [MgI2(Me3SiNPMe3)2] and [Mg2I2(CH2PMe2NSiMe3)(O(Me)CHCH2PMe2NSiMe3)(OEt2)] were identified by crystal structure determinations. The phosphoraneiminato complex [MgBr(NPMe3)]4 · C7H8 with hetero cubane structure is formed by a metathesis reaction of [ZnBr(NPMe3)]4 with RMgBr (R ? Ph. Mes).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号