首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Infrared and Raman spectra of 2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene (BDT-TTP) and 1,3,4,6-tetrathiapentalene-2,5-dione (TTP-DO) are reported. The vibrational modes of TTP-DO are assigned with the aid of the depolarization ratio of solution Raman spectra, polarized reflection spectra and polarized Raman spectra. A D2h symmetry is assumed for the BDT-TTP molecule and its in-plane fundamental vibrations are assigned with the aid of the polarization ratio and the correlation with TTP-DO, tetrathiafulvalene (TTF), tetramethyltetrathiafulvalene (TMTTF) and bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF). Normal coordinate calculation with a modified internal valence force field was carried out for the in-plane fundamental vibrations of TTP-DO and BDT-TTP. Ab initio calculations of the normal modes of BDT-TTP0 and BDT-TTP+ are compared with the empirical analysis.  相似文献   

2.
The preparation, crystal structures, and optical and magnetic properties of two new charge-transfer salts kappa-(EDDH-TTP)(3)[Cr(phen)(NCS)(4)] x 2CH(2)Cl(2) (1) and kappa(21)-(BDH-TTP)(5)[Cr(phen)(NCS)(4)](2) x 2CH(2)Cl(2) (2), where phen = 1,10- phenanthroline, EDDH-TTP = 2-(4,5-ethylenedithio-1,3-dithiol-2-ylidene)-5-(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, and BDH-TTP = 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene, are reported. Crystal data: (1) monoclinic P2(1)/a, a = 25.0752(5) A, b = 10.6732(3) A, c = 28.1601(6) A, beta = 95.195(2) degrees, Z = 4, R = 0.0585 for 6741 independent reflections with I > 3 sigma(I); (2) monoclinic P2(1)/a, a = 23.8275(4) A, b = 9.1015 (2) A, c = 27.0420(1) A, beta = 99.9297(8) degrees, Z = 4, R = 0.0530 for 4565 independent reflections with I > 2 sigma(I). The crystal structures for both compounds consist of alternating organic and inorganic layers. The organic layer in compound 1 is characterized as kappa-type, while the organic layer in 2 resembles the kappa-type but it contains orthogonal dimers and monomers, and it is therefore called kappa(21). Compound 1 shows metallic behavior down to low temperature. Salt 2 shows semiconductive behavior, which is explained as the result of either charge ordering owing to the kappa(21)-type structure or Peierls distortion due to the one-dimensional electronic nature. However, weak metallic behavior could be observed at 10 kbar above ca. 150 K and at 15 kbar above 170 K. The magnetic susceptibilities for both compounds show Curie-Weiss behavior, showing that the exchange interactions between the magnetic anions are weak. Polarized reflectance spectra of single crystals were measured over the spectral range from 650 to 7000 cm(-1). Moreover, absorption and diffusion reflectance spectra of powdered crystals dispersed in KBr (from 400 to 7000 cm(-1)) were recorded. Vibrational and electronic features are discussed.  相似文献   

3.
The synthesis and electrochemical properties of the DHDA-TTP donor, a hybrid of 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene (BDH-TTP) and 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), has been investigated, and its ability to form metallic cation-radical salts is elucidated.  相似文献   

4.
Ji Y  Zhang R  Li YJ  Li YZ  Zuo JL  You XZ 《Inorganic chemistry》2007,46(3):866-873
A series of new platinum(II) complexes containing both 4,4'-di-tert-butyl-2,2'-bipyridine (dbbpy) and the extended tetrathiafulvalenedithiolate ligands have been prepared and characterized. These complexes include [Pt(dbbpy)(C8H4S8)] (1; C8H4S82- = 2-{(4,5-ethylenedithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(ptdt)] (2; ptdt = 2-{(4,5-cyclopentodithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(mtdt)] (3; mtdt = 2-{(4,5-methylethylenedithio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(btdt)] (4; btdt = benzotetrathiafulvalenedithiolate), [Pt(dbbpy)(C8H6S8)] (5; C8H6S82- = 2-{4,5-bis(methylthio)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), [Pt(dbbpy)(3O-C6S8)] (6; 3O-C6S82- = 2-{4,5-dithia-(3',6',9'-trioxaundecyl)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate), and [Pt(dbbpy)(4O-C6S8)] (7; 4O-C6S82- = 2-{4,5-dithia-(3',6',9',12'-tetraoxatetradecyl)-1,3-dithiol-2-ylidene}-1,3-dithiol-4,5-dithiolate). The crystal structures of a new ligand precursor (2-[4,5-dithia-(3',6',9',12'-tetraoxatetradecyl)-1,3-dithiol-2-ylidene]-4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiole, IIIc) and complexes 5-7 have been determined by X-ray crystallography. Complexes 1-7 show intense electronic absorption bands in the UV-vis region due to the intramolecular mixed metal/ligand-to-ligand charge-transfer transition, and they display significant solvatochromic behavior. Redox properties of these compounds have been investigated by cyclic voltammetry, and complex 7 shows a significant response for Na+ ions with a large positive shift of ca. 45 mV.  相似文献   

5.
The synthesis, electrochemical properties, and molecular structure of a new pi-electron donor, 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP), is described. In contrast to the hitherto-known tetrachalcogenafulvalene pi-donors providing organic superconductors, this donor contains only the bis-fused 1,3-dithiole-2-ylidene unit as a pi-electron system, yet produces a series of ambient-pressure superconductors beta-(BDA-TTP)2X [X = SbF6 (magnetic T(c) = 6.9 K, resistive T(c) = 7.5 K), AsF6 (magnetic T(c) = 5.9 K, resistive T(c) = 5.8 K), and PF6 (magnetic T(c) = 5.9 K)], which are isostructural. The values of the intermolecular overlap integrals calculated on the donor layers of these superconductors suggest a two-dimensional (2D) electronic structure with loose donor packing. Tight-binding band calculations also indicate that these superconductors have the 2D band dispersion relations and closed Fermi surfaces.  相似文献   

6.
The platelike crystals of a series of novel molecular conductors, which are based on the pi-donor molecules BDT-TTP (2,5-bis(1,3-dithiol-2-ylidene)-1,3,4,6-tetrathiapentalene) with a tetrathiapentalene skeleton and lanthanide nitrate complex anions [Ln(NO3)x](3-x)(Ln = La, Ce, (Pr), Tb, Dy, Ho, Er, Tm, Yb, Lu) with localized 4f magnetic moments, were synthesized. Except for the Ce complex, the salts were composed of (BDT-TTP)(5)[Ln(NO(3))(5)] and were isostructural. Even though the Ce crystal had a different composition, (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)(x)() (x approximately 3), the crystals all had the space group P(-)1. Although the X-ray examination of the Pr salts was insufficient, the existence of two modifications was suggested in these systems by preliminary X-ray examination. Previously, we reported the crystal structures and unique magnetic properties of (BDT-TTP)(5)[Ln(NO(3))(5)] (Ln = Sm, Eu, Nd, Gd). Thus, by combining the results of this work with previous one, we for the first time succeeded in obtaining a complete set of organic conductors composed of the identical pi-donors (BDT-TTP in this case) and all the lanthanide nitrate complex anions (except the complex with Pm(3+)). The crystals were all metallic down to 2 K. Electronic band structure calculations resulted in two-dimensional Fermi surfaces, which was consistent with their stable metallic states. Except for the Lu complex, which lacked paramagnetic moments, the magnetic susceptibilities were measured on the six heavy lanthanide ion complex salts by a SQUID magnetometer (Ln = Tb, Dy, Ho, Er, Tm, Yb). The large paramagnetic susceptibilities, which were caused by the paramagnetic moments of the rare-earth ions, were obtained. The Curie-Weiss law fairly accurately reproduced the temperature dependence of the magnetic susceptibilities of (BDT-TTP)(5)[Ho(NO(3))(5)] in the experimental temperature range (2-300 K) and a comparatively large Weiss temperature (|THETAV;|) was obtained (THETAV;(Ho) = -15 K). A Weiss temperature (THETAV;(Tm) = -8 K) was also obtained for Tm. The |THETAV;| values of other (BDT-TTP)(5)[Ln(NO(3))(5)] salts and (BDT-TTP)(6)[Ce(NO(3))(6)](C(2)H(5)OH)x(x approximately 3) were as follows: |THETAV;|/K = 4 (Er), < or =2 (Ce, Tb, Dy, Yb). The comparatively strong intermolecular magnetic interaction between Ho(3+) ions, which was suggested by the |THETAV;| value, is inconsistent with the traditional image of strongly localized 4f orbitals shielded by the electrons in the outer 5s and 5p orbitals. The dipole interactions between Ln(3+) ions causing the Curie-Weiss behavior and the comparatively large THETAV; value of (BDT-TTP)(5)[Ho(NO(3))(5)] is inconsistent with the data, since the complexes exhibit isostructural properties and there is not a clear relationship between the magnitudes of THETAV; values and those of magnetic moments. Therefore, it is possible that the 4f orbitals of Ho atom are sensitive to the ligand field, which will have an effect on the orbital moment of the Ho(3+) ion and/or produce a small amount of mixing between 4f and ligand orbitals to give rise to "real" intermolecular antiferromagnetic interaction through intermolecular overlapping between pi (BDT-TTP) and ligand orbitals of lanthanide nitrate complex anions.  相似文献   

7.
8.
Bis-fused pi-electron donors composed of tetrathiafulvalene (TTF) and 2-(thiopyran-4-ylidene)-1,3-dithiole (TPDT), 2-(1,3-dithiol-2-ylidene)-5-(thiopyran-4-ylidene)-1,3,4,6-tetrathiapentalene (1a, TPDT-TTP), and its derivatives (1b-d, 2a-d) have been synthesized as donor components for organic conductors. An X-ray structure analysis of bis(methylthio)-1 (1c) revealed that the TPDT-TTP skeleton is almost planar except for the outer 1,3-dithiole ring, and that the crystal has a two-dimensional "theta-type" arrangement of molecules. The cyclic voltammograms of TPDT-TTPs exhibit four pairs of single-electron redox waves. The first oxidation potential (E(1)) of 1a (+0.37 V vs SCE, in PhCN) is comparable to that of TTF (+0.35 V) and is higher by 0.1 V than that of TPDT (+0.27 V). The observed substituent effect on E(1) values suggests that the first one-electron oxidation mainly occurs in the 2-(thiopyran-4-ylidene)-1,3-dithiole (TPDT) moiety. On the other hand, on-site coulombic repulsion estimated from the E(2) - E(1) value is lower than in TTF and TPDT. MNDO MO calculations reveal that all the sulfur atoms in the 1,3-dithiole rings have the same phase in the HOMO, a condition necessary for realization of effective transverse intermolecular interaction. The present donors have produced many charge-transfer complexes and cation radical salts showing relatively high conductivity (sigma(rt) = 10(-)(1)-10(1) S cm(-)(1)), several of which display metallic temperature dependence.  相似文献   

9.
Neutral pi-conjugated molecules and their radical cations co-exist in [(EDT-TTF-CONHMe+*)4(EDT-TTF-CONHMe0)2] [Re6Se8(CN)6]4- (CH3CN)2(CH2Cl2)2 whose crystal structure reveals that, upon one-electron oxidation, an activation of the N-H and C-H hydrogen bond donor ability is coupled to a deactivation of the hydrogen bond acceptor character of the carbonyl oxygen atom: this is expressed in the supramolecular hydrogen bond pattern and, ultimately, into charge localisation and partition in the solid state.  相似文献   

10.
Flash photolysis of bis[4.5-di(methylsulfanyl) 1,3-dithiol-2-ylidene]-9,10(-dihydroanthracene (1) in chloroform leads to formation of the transient radical cation species 1.+ which has a diagnostic broad absorption band at lambdamax approximately 650 nm. This band decays to half its original intensity over a period of about 80 micros. Species 1.+ has also been characterised by resonance Raman spectroscopy. In degassed solution 1.+ disproportionates to give the dication 1(2+), whereas in aerated solutions the photodegradation product is the 10-[4,5-di(methylsulfanyl) 1,3-dithiol-2-ylidene]anthracene-9(10 H)one (2). The dication 1(2+) has been characterised by a spectroelectrochemical study [lambdamax (CH2Cl2) = 377, 392, 419, 479 nm] and by an X-ray crystal structure of the salt 1(2-) (ClO4)2, which was obtained by electrocrystallisation. The planar anthracene and 1,3-dithiolium rings in the dication form a dihedral angle of 77.2 degrees; this conformation is strikingly different from the saddle-shaped structure of neutral 1 reported previously.  相似文献   

11.
A systematic substitution of the terminal chlorides coordinated to the hexanuclear cluster [Re(6)S(8)Cl(6)](4-) has been conducted. The following complexes: [Re(6)S(8)(PEt(3))Cl(5)](3-) (1), cis- (cis-2) and trans-[Re(6)S(8)(PEt(3))(2)Cl(4)](2-) (trans-2), mer- (mer-3) and fac-[Re(6)S(8)(PEt(3))(3)Cl(3)](-) (fac-3), and cis- (cis-4) and trans-[Re(6)S(8)(PEt(3))(4)Cl(2)] (trans-4) were synthesized and fully characterized. Compared to the substitution of the halide ligands of the related [Re(6)S(8)Br(6)](4-) and [Re(6)Se(8)I(6)](3-) clusters, the chloride ligands are slower to substitute which allowed us to prepare the first monophosphine cluster (1). In addition, the synthesis of fac-3 was optimized by using cis-2 as the starting material, which led to a significant increase in the overall yield of this isomer. Notably, we observed evidence of phosphine isomerization taking place during the preparation of the facial isomer; this was unexpected based on the relatively inert nature of the Re-P bond. The structures of Bu(4)N(+) salts of trans-2, mer-3, and fac-3 were determined using X-ray crystallography. All compounds display luminescent behavior. A study of the photophysical properties of these complexes includes measurement of the excited state lifetimes (which ranged from 4.1-7.1 μs), the emission quantum yields, the rates of radiative and non-radiative decay, and the rate of quenching with O(2). Quenching studies verify the triplet state nature of the excited state.  相似文献   

12.
New radical cation salts based on 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene (BDA-TTP) with copper(II) metal complex anions, β-(BDA-TTP)4Cu2Cl6 and (BDA-TTP)2CuCl4, were synthesized and structurally characterized. Single crystals were prepared by electrochemical oxidation of BDA-TTP under galvanostatic conditions. X-ray diffraction study demonstrated that the salts have a layered structure, in which the conducting BDA-TTP layers alternate with the [Cu2Cl6]2− or [CuCl4]2− anions. Both salts show the semiconductor-type temperature dependence of the conductivity. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 48–54, January, 2007.  相似文献   

13.
Charge localization generates a non-uniform charge distribution in some organic conductors. Phase transitions accompanying such a localization of charge are studied by using infrared and Raman spectroscopy. We first introduce θ-(BEDT-TTF)2MM′(SCN)4 (M=Rb, Cs, Tl; M′=Zn, Co) as typical examples of a charge-ordering system, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene. We apply the same spectroscopic technique to α′-(BEDT-TTF)2IBr2, θ-(BDT-TTF)2Cu(NCS)2, and (TTM-TTP)I3, which show the phase transitions from low-resistivity to high-resistivity state, where TTM-TTP is 2,5-bis[4,5-bis(methylsulfonyl)-1,3-dithiol-2-ylidene]-1,3,4,6-tetrathiapentalene.  相似文献   

14.
The Staudinger reaction of the imidazolin-2-ylidenes, 1,3-di-tert-butylimidazolin-2-ylidene (1a), 1,3-diisopropylimidazolin-2-ylidene (1b), 1,3-diisopropyl-4,5-dimethylimidazolin-2-ylidene (1c), 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (1d) and 1,3-bis(2,6-diisopropylphenylimidazolin-2-ylidene (1e), with trimethylsilyl azide furnishes the corresponding N-silylated 2-iminoimidazolines 2a-e, which react with [(eta-C5H5)TiCl3] to afford half-sandwich cyclopentadienyl titanium complexes of the type [CpTi(L)Cl2] (3) (L = imidazolin-2-iminato ligand). Similarly, the reactions of 1,3-di-tert-butyl-2-(trimethylsilylimino)imidazoline (2a) with [(eta-tBuC5H4)TiCl3] results in the formation of [(eta-tBuC5H4)Ti(L)Cl2] (4) (L = 1,3-di-tert-butylimidazolin-2-imide). Bis(1,3-di-tert-butylimidazolin-2-iminato)titanium dichloride (5) is obtained from the reaction of two eq. of 2a with TiCl4. Treatment of 5 with methyllithium results in the formation of the corresponding dimethyl complex [L2Ti(CH3)2] (6), whereas [CpTi(L)(CH3)2] (7) is similarly obtained from 3a. The molecular structures of 3a, 3b, 3c, 3e x C7H8, 4 and 7 are reported revealing linearly coordinated imidazolin-2-iminato ligands together with very short Ti-N bond distances. All dichloro complexes (3a-e, 4 and 5) can be activated with methylaluminoxane (MAO) to give active catalysts for ethylene homopolymerization. In most cases, moderate to high activities are observed together with the formation of high (HMWPE) or even ultra high molecular weight polyethylene (UHMWPE).  相似文献   

15.
A range of new functionalised 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene (TTFAQ) derivatives have been synthesised from the key di(halomethyl) building blocks, 10-[4,5-bis(bromomethyl)-1,3-dithiol-2-ylidene]-anthracene-9(10H)-one 10, 10-[4,5-bis(chloromethyl)-1,3-dithiol-2-ylidene]anthracene-9(10H)-one 11 and 9-[4,5-bis(chloromethyl)-1,3-dithiol-2-ylidene]-10-[4,5-bis(hexylsulfanyl)- 1,3-dithiol-2-ylidene]-9,10-dihydroanthracene 18. A Diels-Alder strategy comprising trapping of the transient exocyclic diene 19, which is derived from 18, with 1,4-naphthoquinone leads to the aromatised TTFAQ anthraquinone system 21. Horner-Wadsworth-Emmons olefination of 21 with the anion generated from reagent 22 gave the fused bis(TTFAQ) structure 23. Pyrrolo-annelated derivatives 30-34 have been obtained in a sequence of reactions from compound 10. Mono-formylation of the pyrrole ring of 32 and 33 under Vilsmeier conditions gave 35 and 36 which upon reaction with 2,4,5,7-tetranitrofluorene gave the donor-pi-acceptor diads 38 and 39. Cyclic voltammetry (CV) in solution for all the TTFAQ derivatives shows the typical quasi-reversible two-electron oxidation wave of the TTFAQ core at potentials which vary slightly depending on the substituents. For example, the value of Eox is raised by the electron withdrawing anthraquinone and tetranitrofluorene units of 21 and 38, respectively. The CV of the conjugated TTFAQ dimer 23 showed two, two-electron oxidation waves corresponding to the sequential formation of 23(2+) and 23(4+) (delta Eox = 130 mV) providing evidence for a significant intramolecular electronic interaction, i.e. the dication 23(2+) acts as a conjugated donor-pi-acceptor diad, thereby raising the oxidation potential of its partner TTFAQ unit. Spectroelectrochemical studies on 23 support this explanation. A strong intramolecular charge transfer band at lambda max 538 nm is seen in the UV-Vis spectra of the TTFAQ-pi-tetranitrofluorene diads 38 and 39. The X-ray crystal structures are reported for compounds 30, 33 and 34. The pyrrolo-TTFAQ moiety adopts a saddle-shape with the central ring of the dihydroanthracene moiety folded along the C(9) ... C(10) vector in each case. Significant intermolecular interactions are observed in the structures.  相似文献   

16.
Ti(C5H5)2(C8H4S8) (1), Ti(C5Me5)2(C8H4S8) (2), [NMe4][Ti(C5H5)(C8H4S8)2] (3), and [NMe4][Ti(C5Me5)(C8H4S8)2] (4) [C8H4S8(2-) = 2-(4,5-ethylenedithio)-1,3-dithiole-2-ylidene)-1,3-dithiole-4,5- dithiolate(2-)] were prepared by reaction of Ti(C5H5)2Cl2, Ti(C5Me5)2Cl2, Ti(C5H5)Cl3, or Ti(C5Me5)Cl3 with Li2C8H4S8 or [NMe4]2[C8H4S8] in THF. They were oxidized by iodine, the ferrocenium cation, or TCNQ (7,7,8,8-tetracyano-p-quinodimethane) in CH2Cl2 or in acetone to afford one-electron-oxidized and over-one-electron-oxidized species, [Ti(C5H5)2(C8H4S8)].I3, [Ti(C5H5)2(C8H4S8)][PF6], [Ti(C5Me5)2(C8H4S8)].I3, [Ti(C5Me5)2(C8H4S8)][PF6], [Ti(C5H5)(C8H4S8)2].I0.9, [Ti(C5H5)(C8H4S8)2][TCNQ]0.3, [Ti(C5Me5)(C8H4S8)2].I2.4, and [Ti(C5Me5)(C8H4S8)2][TCNQ]0.3, with the C8H4S8 ligand-centered oxidation. They exhibited electrical conductivities of 1.6 x 10(-1) to 7.6 x 10(-4) S cm-1 measured for compacted pellets at room temperature. The crystal structure of 2 was clarified to consist of isolated dimerized units of the molecules through some sulfur-sulfur nonbonded contacts: monoclinic, P2(1)/c, a = 9.534(2) A, b = 18.227(2) A, c = 17.775(2) A, beta = 94.39(1) degrees, Z = 4.  相似文献   

17.
The tosylate (p-toluenesulfonate) cluster [Bu4N]2[W6Cl8(p-OSO2C6H4CH3)6] (1) has been prepared and characterized by IR and NMR spectroscopy, elemental analysis, and an X-ray crystal structure. This cluster complex is shown to be a useful starting material for the preparation of pseudohalide clusters, [Bu4N]2[W6Cl8(NCQ)6] (Q = O (2), S (3), and Se (4)), in high yields. Cluster 1 also serves as a precursor to the new cluster compounds: [Bu4N]2[W6Cl8(O2CCH3)6] (5), [Bu4N]2[W6Cl8((mu-NC)Mn(CO)2(C5H5))6] (6), [W6Cl8((mu-NC)Ru(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (7), and [W6Cl8((mu-NC)Os(PPh3)2(C5H5))6][ p-OSO2C6H4CH3]4 (8). X-ray crystal structures are reported for 1, 4, and 5.  相似文献   

18.
The present study investigates structural and functional aspects of the redox chemistry of rhenium(III) chloride [Re3Cl9] (1) in aqueous and organic solvents, with emphasis on the dioxygen-activating capabilities of reduced rhenium clusters bearing the Re3(8+) core. Dissolution of 1 in HCl (6 M) generates [Re3(mu-Cl)3Cl9]3- (2a), which can be isolated as the tetraphenylphosphonium salt (2b). Anaerobic one-electron reduction of 1 by Hg in HCl (6-12 M) produces [(C6H5)4P]2[Re3(mu-Cl)3Cl7(H2O)2].H2O (3), the structure of which features a planar [Re3(mu-Cl)3Cl3] framework (Re3(8+) core), involving two water ligands that occupy out-of-plane positions in a trans arrangement. Compound 3 dissociates in the presence of CO, yielding [(C6H5)4P]2[ReIII2Cl8] (4) and an unidentified red carbonyl species. In situ oxidation (O2) of the reduced Re3(8+)-containing cluster in HCl (6 M) produces quantitatively 2a, whereas oxidation of 3 in organic media results in the formation of [(C6H5)4P]4[(Re3(mu-Cl)3Cl7(mu-OH))2].2CH2Cl2 (5). The structure of 5 reveals that two oxygen ligands (hydroxo units) bridge asymmetrically two Re3(9+) triangular clusters. The origin of these hydroxo units derives from the aquo ligands, rather than O2, as shown by 18O2 labeling studies. The hydroxo bridges of 5 can be replaced by chlorides upon treatment with Me3SiCl to afford the analogous [(C6H5)4P]4[(Re3(mu-Cl)3Cl7(mu-Cl))2].10CH2Cl2 (6). The reaction of 5 with Hg in HCl (6 M)/tetrahydrofuran regenerates compound 3. Complexes 1-3 exhibit nitrile hydratase type activity, inducing hydrolysis of CH3CN to acetamide. The reaction of 3 with CH3CN yields [(C6H5)4P]2[Re3(mu-Cl)3Cl6.5(CH3CN)1.5(CH3C(O)NH)0.5] (7), the structure of which is composed of [Re3(mu-Cl)3Cl7(CH3CN)2]2- (7a) and [Re3(mu-Cl)3Cl6(CH3CN)(CH3C(O)NH)]2- (7b) (Re3(8+) cores) as a disordered mixture (1:1). Oxidation of 7 with O2 in CH3CN affords [(C6H5)4P]2[Re3(mu-Cl)3Cl7(CH3C(O)NH)].CH3CN (8) and small amounts of [(C6H5)4P][ReO4] (9). Compound 8 is also independently isolated from the reaction of 2b with wet CH3CN, or by dissolving 5 in CH3CN. In MeOH, 5 dissociates to afford [(C6H5)4P]2[Re3(mu-Cl)3Cl8(MeOH)].MeOH (10).  相似文献   

19.
The conversions of hexahydroxo rhenium cluster complexes [Re6Q8(OH)6]4- (Q=S, Se) in aqueous solutions in a wide pH range were investigated by chemical methods and spectroscopic measurements. Dependences of the spectroscopic and excited-state properties of the solutions on pH have been studied in detail. It has been found that a pH decrease of aqueous solutions of the potassium salts K4[Re6Q8(OH)6].8H2O (Q=S, Se) results in the formation of aquahydroxo and hexaaqua cluster complexes with the general formula [Re6Q8(H2O)n(OH)6-n]n-4 that could be considered as a result of the protonation of the terminal OH- ligands in the hexahydroxo complexes. The compounds K2[Re6S8(H2O)2(OH)4].2H2O (1), [Re6S8(H2O)4(OH)2].12H2O (2), [Re6S8(H2O)6][Re6S6Br8].10H2O (3), and [Re6Se8(H2O)4(OH)2] (4) have been isolated and characterized by X-ray single-crystal diffraction and elemental analyses and infrared (IR) spectroscopy. In crystal structures of the aquahydroxo complexes, the cluster units are connected to each other by an extensive system of very strong hydrogen bonds between terminal ligands.  相似文献   

20.
The electrocrystallization of fluorinated bis(2,2'-difluoropropylenedithio)tetrathiafulvalene (1) in the presence of linear (ICl2-, IBr2-, I2Br-) or cluster ([Mo6Cl14]2-) anions affords 1:1 and 2:1 cation radical salts such as [1][ICl2] and [1]2[Mo6Cl14].(CH3CN)2. In both salts, the 1*+ radical ion adopts a boat conformation and envelops the anion through C-H...Hal(anion) (Hal(anion) = Cl, Br, I) hydrogen bonds. This demonstrates the activating role of the neighboring electron-withdrawing CF2 moieties in the stabilization of bi- or trimolecular neutral entities. With smaller linear anions, fluorine segregation controls the solid-state associations of the bimolecular [1]*+[X] entities, and gives rise to layered materials with a limited overlap interaction between the open-shell organic cations and magnetic spin chain behavior. With the larger [Mo6Cl14]2 ions, a strong overlap interaction between radical cations gives rise to diamagnetic [1]2(2+) dimers, which alternate with the cluster anions to form hybrid organic/inorganic ...[1]2(2+)[Mo6Cl14]2... chains. This behavior is also observed in [2]2(2+)[Mo6Cl14]2-.(CH2Cl2)2, in which compound 2 is the unsymmetrically substituted (ethylenedithio)(2,2'-difluoropropylenedithio)tetrathiafulvalene. On the other hand, the unsymmetrically substituted 2,2'-difluoropropylenedithiotetrathiafulvalene (3) affords a mixed-valence 4:1 salt with [Mo6Cl14]2, which is formulated as [3]4[Mo6Cl14].(CH3CN)2. This semiconducting salt is characterized by the coexistence of both the fluorine/fluorine segregation (with solvent inclusion) and the organic/inorganic segregation (with delocalized overlap interactions). Both Csp2-H...Cl and Csp3-H...Cl hydrogen bonds facilitate the stabilization of the organic/inorganic interface and the presence of conducting organic slabs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号