首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three (O‐methyl)‐p‐ethoxyphenyldithiophosphonato triphenylphosphine complexes of copper, silver and gold, [(Ph3P)nM{S2P(OMe)C6H4OEt‐p}] (M = Cu, n = 2; M = Ag, Au, n = 1) investigated structurally by X‐ray diffraction exhibit remarkable structural differences. The copper compound is a four‐coordinate chelate monomer with Cu–S 2.4417(6) and 2.5048(6) Å; P–Cu–S 104.24(2)–114.01(2)°; Cu–S–P 82.49(3)° and 80.85(2)°. The silver compound is a cyclic dimer with bridging dithiophosphonato ligands and three‐coordinate silver atoms [Ag–S 2.5371(5) and 2.6867(5) Å; P–Ag–S 122.88(2)° and 122.17(2)°; Ag–S–P 89.32(2)° and 103.56(2)°]. The gold compound is monomeric with linear dicoordinate gold [Au–S 2.3218(6) Å; P–Au–S 177.72(2)°, Au–S–P 100.97(3)°].  相似文献   

2.
An electrochemical sensor for simultaneous quantification of Levodopa (L‐dopa) and Carbidopa (C‐dopa) using a β‐cyclodextrin/poly(N‐acetylaniline) (β‐CD/PNAANI) modified carbon paste electrode has been developed. Preconcentrating effect of β‐CD as well as its different inclusion complex stability with L‐dopa and C‐dopa was used to construct an electrochemical sensor for quantification of these important analytes. The overlapping anodic peaks of L‐dopa and C‐dopa at 810 mV on bare carbon paste electrode resolved in two well‐defined voltammetric peaks at 450 and 880 mV vs. Ag/AgCl, respectively, with a drastic enhancement of the anodic peak currents. Under optimized conditions, linear calibration curves were obtained in the ranges of 0.5–117 µM and 1.6–210 µM with detection limits down to 0.2 and 0.8 µM for L‐dopa and C‐dopa, respectively. The proposed electrode was successfully applied for the determination of L‐dopa /C‐dopa in pharmaceutical formulations and the results were in close agreement with the labeled values.  相似文献   

3.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

4.
N‐(3,4‐dihydroxyphenethyl)‐3,5‐dinitrobenzamide modified multiwall carbon nanotubes paste electrode was used as a voltammetric sensor for oxidation of penicillamine (PA), uric acid (UA) and tryptophan (TP). In a mixture of PA, UA and TP, those voltammograms were well separated from each other with potential differences of 300, 610, and 310 mV, respectively. The peak currents were linearly dependent on PA, UA and TP concentrations in the range of 0.05–300, 5–420, and 1.0–400 µmol L?1, with detection limits of 0.021, 2.0, and 0.82 µmol L?1, respectively. The modified electrode was used for the determination of those compounds in real samples.  相似文献   

5.
许文菊  袁若  柴雅琴 《中国化学》2009,27(1):99-104
本文以2,9,16,23-四硝基酞菁铜(II) (Cu(II)TNPc) 和2,9,16,23-四氨基酞菁铜(II) (Cu(II)TAPc) 为载体制备PVC聚合膜,构建了水杨酸根选择性电极,并探讨了该电极的选择性响应性能。研究了增塑剂的性质、载体的含量及阴、阳离子添加剂对电极电位响应的影响。结果表明,基于Cu(II)TNPc为载体的PVC膜电极对水杨酸根 (Sal-) 呈现出优先选择性电位响应。具有最佳电位响应的电极的膜组成是:(w/w) 3.0% Cu(II)TNPc,67.0% o-NPOE,29.5% PVC和0.5% NaTPB。基于该组成的电极的线性响应范围为1.0×10-1-9.0×10-7 mol·L-1,检测下限为7.2×10-7 mol·L-1,斜率为-59.8±0.5 mV/decade;其响应快速,稳定性好,适宜的pH范围是3.0-7.0。并成功运用于了实际样品中水杨酸含量的测定,获得令人满意的结果。  相似文献   

6.
Pt‐nanoparticles were synthesized and introduced into a carbon paste electrode (CPE), and the resulting modified electrode was applied to the anodic stripping voltammetry of copper(II) ions. The synthesized Pt‐nanoparticles were characterized by cyclic voltammetry, scanning electron microscopy and X‐ray photoelectron spectroscopy techniques to confirm the purity and the size of the prepared Pt‐nanoparticles (ca. 20 nm). This incorporated material seems to act as catalysts with preconcentration sites for copper(II) species that enhances the sensitivity of Cu(II) ions to Cu(I) species at a deposition potential of ?0.6 V in an aqueous solution. The experimental conditions, such as, the electrode composition, pH of the solution, pre‐concentration time, were optimized for the determination of Cu(II) ion using as‐prepared electrode. The sensitivity changes on the different binder materials and the presence of surfactants in the test solution. The interference effect of the coexisted metals were also investigated. In the presence of surfactants, especially TritonX‐100, the Cu(II) detection limit was lowered to 3.9×10?9 M. However, the Pt‐nanoparticle modified CPE begins to degrade when the period of deposition exceeds to 10 min. Linear response for copper(II) was found in the concentration range between 3.9×10?8 M and 1.6×10?6 M, with an estimated detection limit of 1.6×10?8 M (1.0 ppb) and relative standard deviation was 4.2% (n=5).  相似文献   

7.
In this work, a boron‐doped diamond (BDD) electrode was used for the electroanalytical determination of indole‐3‐acetic acid (IAA) phytohormone by square‐wave voltammetry. IAA yielded a well‐defined voltammetric response at +0.93 V (vs. Ag/AgCl) in Britton–Robinson buffer, pH 2.0. The process could be used to determine IAA in the concentration range of 5.0 to 50.0 µM (n=8, r=0.997), with a detection limit of 1.22 µM. The relative standard deviation of ten measurements was 2.09 % for 20.0 µM IAA. As an example, the practical applicability of BDD electrode was tested with the measurement of IAA in some plant seeds.  相似文献   

8.
A carbon paste electrode spiked with 1‐[4‐ferrocenyl ethynyl) phenyl]‐1‐ethanone (4FEPE) was constructed by incorporation of 4FEPE in graphite powder‐paraffin oil matrix. It has been shown by direct current cyclic voltammetry and double step chronoamperometry that this electrode can catalyze the oxidation of tryptophan (Trp) in aqueous buffered solution. It has been found that under optimum condition (pH 7.00), the oxidation of Trp at the surface of such an electrode occurs at a potential about 200 mV less positive than at an unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and rate constant for the chemical reaction between Trp and redox sites in 4FEPE modified carbon paste electrode (4FEPEMCPE) were also determined using electrochemical approaches. The electrocatalytic oxidation peak current of Trp showed a linear dependent on the Trp concentrations and linear calibration curves were obtained in the ranges of 6.00×10?6 M–3.35×10?3 M and 8.50×10?7 M–6.34×10?5 M of Trp concentration with cyclic voltammetry (CV) and differential pulse voltammetry (DPV) methods, respectively. The detection limits (3σ) were determined as 1.80×10?6 M and 5.60×10?7 M by CV and DPV methods. This method was also examined as a selective, simple and precise new method for voltammetric determination of tryptophan in real sample.  相似文献   

9.
The electrochemical oxidation of pyrogallol at electrogenerated poly(3,4‐ethylenedioxythiophene) (PEDOT) film‐modified screen‐printed carbon electrodes (SPCE) was investigated. The voltammetric peak for the oxidation of pyrogallol in a pH 7 buffer solution at the modified electrode occurred at 0.13 V, much lower than the bare SPCE and preanodized SPCE. The experimental parameters, including electropolymerization conditions, solution pH values and applied potentials were optimized to improve the voltammetric responses. A linear calibration plot, based on flow‐injection amperometry, was obtained for 1–1000 µM pyrogallol, and a slope of 0.030 µA/µM was obtained. The detection limit (S/N=3) was 0.63 µM.  相似文献   

10.
Determination of berberine, an isoquinoline plant alkaloid, with antibacterial, antiparasitic, antifungal, hypotensive and antitumoral effects, was proposed by introducing square wave voltammetry on boron‐doped diamond electrode. At optimized experimental parameters, in Britton‐Robinson buffer solution pH 5 berberine provides 3 oxidation peaks (+0.63; +1.14 and +1.34 V) and one reduction (+0.15 V) (vs. Ag/AgCl electrode), with good repeatability (relative standard deviation of 2.6 % and 1.9 % for 8 measurements at 0.5 and 10 µM concentration level, respectively). Calibration curve was linear in wade linear range from 0.1 to 50 µM with limit of detection of 0.04 µM. The proposed procedure was successfully applied for the determination of berberine in seed extract from Argemone mexicana with satisfactory recovery (102–102.6 %). The developed method may represent a sensitive alternative to highly toxic mercury electrodes, modified electrodes and chromatographic methods.  相似文献   

11.
A sensitive and simple electrochemical method for norepinephrine (NE) determination was developed based on a poly(1,5‐diaminonaphthalene) film electrode (PDAN). Cathodically pretreated PDAN presents good selectivity, sensitivity, and reproducibility for NE. The polymer film can be easily electropolymerized onto a platinum electrode by cyclic voltammetry in 1.0 M HClO4. A cathodic pretreatment, consisting of the application of a potential of ?0.7 V for 3 s (vs. Ag/AgCl) to PDAN before each voltammetric measurement, enhanced the electrochemical activity of NE with no inference of ascorbic acid (AA). In optimized conditions, PDAN presents linear responses for NE in the range of 9.90 to 90.9 µM by differential pulse voltammetry (DPV) with a detection limit of 1.82 µM. A relative standard deviation of 3.0 % was obtained for 10 consecutive measurements of 40.0 µM NE solutions. The cathodically pretreated PDAN was successfully applied for NE determination in pharmaceutical formulation samples.  相似文献   

12.
《Electroanalysis》2006,18(12):1193-1201
A chemically modified carbon paste electrode with 2,7‐bis(ferrocenyl ethyl)fluoren‐9‐one (2,7‐BFEFMCPE) was employed to study the electrocatalytic oxidation of ascorbic acid in aqueous solution using cyclic voltammetry, differential pulse voltammetry and chronoamperometry. The diffusion coefficient (D=1.89×10?5 cm2 s?1), and the kinetic parameter such as the electron transfer coefficient, α (=0.42) of ascorbic acid oxidation at the surface of 2,7‐BFEFMCPE was determined using electrochemical approaches. It has been found that under an optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such an electrode occurs at a potential about 300 mV less positive than that of an unmodified carbon paste electrode. The catalytic oxidation peak currents show a linear dependence on the ascorbic acid concentration and linear analytical curves were obtained in the ranges of 8.0×10?5 M–2.0×10?3 M and 3.1×10?5 M–3.3×10?3 M of ascorbic acid with correlation coefficients of 0.9980 and 0.9976 in cyclic voltammetry and differential pulse voltammetry, respectively. The detection limits (2δ) were determined to be 2.9×10?5 M and 9.0×10?6 M with cyclic voltammetry and differential pulse voltammetry, respectively. This method was also examined for determination of ascorbic acid in pharmaceutical preparations.  相似文献   

13.
Hg(II) has formed a soluble complex with 4‐(dimethylamino) benzaldehyde‐4‐ethylthiosemicarbazone (DMABET) in methanol with a molar ratio of mercury(II):DMABET of 1 : 4. The formation constant (Kf) and Gibbs free energy (?G) of the complex showed that the formation of the complex was favorable. The DMABET was investigated as ionophore for Hg(II)‐ion selective electrode (ISE). At optimum pH 1–5 the proposed Hg(II)‐ISE showed an almost Nernstian slope at 27.8±1 mV, with linear regression coefficient, R2=0.995 and a detection limit of 5×10?6 M. There was no serious interference from silver(I) with selectivity coefficient 5.69×10?3. The electrode life span was more than 3 months. It has been applied for real water sample analysis and the results were in good agreement with the standard method.  相似文献   

14.
An all solid‐state Ag(I) ion‐selective electrode has been prepared by simply immersing a glassy carbon rod coated with PVCAc, which contained plasticizer and additive but no ionophore, into the AgNO3 solution. The response of the electrode was linear with a Nernstian slope of 60.25 mV/decade within the concentration range from 1×10?1 to 1×10?5 M and with a detection limit of 4.25×10?6 M. The stability as an effect of various cations was defined. The electrode is suitable for use in high acidic solutions (pH<1 to 7) and has successfully been applied for the determination of silver(I) concentrations in different samples.  相似文献   

15.
With a polarized double‐zeta basis set, we carried out MP2 and density functional theory geometry optimization of bis(2,2′‐bipyridine) interacting either with Cu(I) or Ag(I). The computed gas‐phase geometries of both Cu and Ag complexes present tetrahedral distortions around the ions. However, geometry optimization on Cu or Ag ions complexing with ammonia molecules yield perfect tetrahedral coordination and interaction energies comparable to those of the bis(2,2′‐bipyridine) complexes. Solid‐state laboratory studies on complexes of the same metal ions with substituted bis(2,2′‐bipyridine) revealed tetrahedral distortions around the ions, even stronger than those computed in the gas phase. From our analysis of the potential interaction energies we conclude that the origin of the larger distortions in the solid state result from stacking interactions. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 93: 395–404, 2003  相似文献   

16.
Poly(pyridine‐3‐boronic acid) (PPBA)/multiwalled carbon nanotubes (MWCNTs) composite modified glassy carbon electrode (GCE) was used for the simultaneous determination of ascorbic acid (AA), 3,4‐dihydroxyphenylacetic acid (DOPAC) and uric acid (UA). The anodic peaks for AA, DOPAC and UA at the PPBA/MWCNTs/GCE were well resolved in phosphate buffer solution (pH 7.4). The electrooxidation of AA, DOPAC and UA in the mixture solution was investigated. The peak currents increase with their concentrations increasing. The detection limits (S/N=3) of AA, DOPAC and UA are 5 µM, 3 µM and 0.6 µM, respectively.  相似文献   

17.
We report a simple, sensitive, and rapid detection of captopril using copper(II) and a bare glassy carbon electrode with cyclic voltammetry. The captopril is detected by the formation of a copper(II)‐captopril complex that is observed to have a characteristic oxidation potential at+0.24 V vs. Ag/AgCl. It is found that the peak current varies linearly with the concentration of captopril. The linear dynamic range is obtained for a captopril concentration of 1 µM to 10 µM, and the sensitivity is found to be 0.10±0.003 μA μM?1. Importantly, the low limit of detection (n=3) of 0.10 μM and the precision of 3.2 %, are achieved using a simple, unmodified electrode. This is attributable to in situ adsorption of a copper(II)‐captopril complex on the electrode surface.  相似文献   

18.
Three dinuclear copper(I) complexes, [Cu2(µ‐Cl)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2CH2Cl2 ( 1 ), [Cu2(µ‐Br)2(1,2‐(PPh2)2‐1,2‐C2B10H10)2]·2THF ( 2 ) and {Cu2(µ‐I)2[1,2‐(PPh2)2‐1,2‐C2B10H10]2} ( 3 ) have been synthesized by the reactions of CuX (X = Cl, Br and I) with the closo ligand 1,2‐(PPh2)2‐1,2‐C2B10H10. All these complexes were characterized by elemental analysis, FT‐IR, 1H and 13C NMR spectroscopy and X‐ray structure determination. Single crystal X‐ray structure determinations show that every complex contained di‐µ‐X‐bridged structure involving a crossed parallelogram plane formed by two Cu atoms and two X atoms (X = Cl, Br, I). The geometry at the Cu atom was a distorted tetrahedron, in which two positions were occupied by two P atoms of the PPh2 groups connected to the two C atoms of carborane (Cc), and the other two resulted from two X atoms which bridged the other Cu atom at the same time. To the best of our knowledge, this is the first example of copper(I) complexes with 1,2‐diphenylphosphino‐1,2‐dicarba‐closo‐dodecaborane as ligand characterized by X‐ray diffraction. The catalytic property of the complex 3 for the amination of iodobenzene with aniline was also investigated. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
A new ion selective electrode for salicylate based on N,N'-(aminoethyl)ethylenediamide bis(2-salicylideneimine) binuclear copper(Ⅱ) complex [Cu(Ⅱ)2-AEBS] as an ionophore was developed. The electrode has a linear range from 1.0 × 10^-1 to 5.0 ×10^-7 mol·L^- 1 with a near-Nemstian slope of ( - 55 ±1 ) mV/decade and a detection limit of 2.0 × 10-7 mol·L^-1 in phosphorate buffer solution of pH 5.0 at 25 ℃. It shows good selectivity for Sal^- and displays anti-Hofmeister selectivity sequence: Sal^-〉SCN^-〉 ClO4^- 〉I^-〉 NO2^- 〉Br^-〉 NO3^- 〉Cl^-〉 SO3^2- 〉 SO4^2- The proposed sensor based on binuclear copper(Ⅱ)complex has a fast response time of 5-10 s and can be used for at least 2 months without any major deviation. The response mechanism is discussed in view of the alternating current (AC) impedance technique and the UV-vis spectroscopy technique. The effect of the electrode membrane compositions and the experimental conditions were studied. The electrode has been successfully used for the determination of salicylate ion in drug pharmaceutical preparations.  相似文献   

20.
The reaction of 4,4′‐bis(1,2,4‐triazol‐1‐ylmethyl)biphenyl (btmb) with silver(I) salts of BF4, NO3 and N3 led to the formation of four new silver(I) coordination polymers {[Ag(btmb)]BF4}n ( 1 ), {[Ag2(btmb)3](NO3)2(H2O)5}n ( 2 ), [Ag2(btmb)(N3)2]n ( 3 ), and [Ag(btmb)(N3)]n ( 4 ). Their coordination number varies from 2 (in 1 ) to 3 (in 2 ), 4 (in 3 ), and 5 (in 4 ). Different from the single chain structure of 1 , complex 2 displays a 1D ladder‐like double chain framework, whereas complex 3 exhibits a 2D layered architecture. Complex 4 has the same anion as complex 3 but shows a different metal‐to‐ligand ratio and a 1D double‐zigzag chain structure. Both 3 and 4 have Ag ··· Ag argentophilic interactions. The ligand btmb adopts both cis or trans configuration in the studied complexes. A trans‐ or cis‐btmb ligand link silver ions with Ag ··· Ag distances of ≈?18 and 13 Å, respectively. BF4 and NO3 are non‐coordinating anions in 1 and 2 . N3 is the bridging anion in 3 (1,3‐bridging fashion) and 4 (1,1‐bridging fashion). These findings suggest that the coordination numbers around the AgI ion correlate to the coordination abilities of anions and the btmb to silver ratio. In addition, the influence of anions on thermal stability were also investigated. This work is a good example that nicely supports the less explored field of anion‐dependent structures of complexes with non‐pyridyl ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号