首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Calmodulin (CaM) is an important intracellular calcium‐binding protein. It plays a critical role in a variety of biological and biochemical processes. In this paper, a new electrochemical immunosensing protocol for sensitive detection of CaM was developed by using gold‐silver‐graphene (AuAgGP) hybrid nanomaterials as protein immobilization matrices and gold nanorods (GNRs) as enhanced electrochemical labels. Electrode was first modified with thionine‐chitosan film to provide an immobilization support for gold‐silver‐graphene hybrid nanomaterials. The hybrid materials formed an effective matrix for binding of CaM with high density and improved the electrochemical responses as well. Gold nanorods were prepared for the fabrication of enhanced labels (HRP‐Ab2‐GNRs), which provided a large capacity for HRP‐Ab2 immobilization and a facile pathway for electron transfer. With two‐step immunoassay format, the HRP‐Ab2‐GNRs labels were introduced onto the electrode surface, and produced electrochemical responses by catalytic reaction of HRP toward enzyme substrate of hydrogen peroxide (H2O2) in the presence of thionine. The proposed immunosensor showed an excellent analytical performance for the detection of CaM ranging from 50 pg mL?1 to 200 ng mL?1 with a detection limit of 18 pg mL?1. The immunosensor has also been successfully applied to the CaM analysis in two cancer cells (HepG2 and MCF‐7) with high sensitivity, which has shown great potency for improving clinic diagnosis and treatment for cancer study.  相似文献   

2.
Various sensor‐based immunoassay methods have been extensively developed for the detection of cancer antigen 15‐3 (CA 15‐3), but most often exhibit low detection signals and low detection sensitivity, and are unsuitable for routine use. The aim of this work is to develop a simple and sensitive electrochemical immunoassay for CA 15‐3 in human serum by using nanogold and DNA‐modified immunosensors. Prussian blue (PB), as a good mediator, was initially electrodeposited on a gold electrode surface, then double‐layer nanogold particles and double‐strand DNA (dsDNA) with the sandwich‐type architecture were constructed on the PB‐modified surface in turn, and then anti‐CA 15‐3 antibodies were adsorbed onto the surface of nanogold particles. The double‐layer nanogold particles provided a good microenvironment for the immobilization of biomolecules. The presence of dsDNA enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The performance and factors influencing the performance of the immunosensor were evaluated. Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 1.0 to 240 ng/mL with a relatively low detection limit of 0.6 ng/mL (S/N=3) towards CA 15‐3. The stability, reproducibility and precision of the as‐prepared immunosensor were acceptable. 57 serum specimens were assayed by the developed immunosensor and standard enzyme‐linked immunosorbent assay (ELISA), respectively, and the results obtained were almost consistent. More importantly, the proposed methodology could be further developed for the immobilization of other proteins and biocompounds.  相似文献   

3.
A simple and portable electrochemical immunosensor for the detection of total prostate specific antigen (t‐PSA) in human serum was developed using a double‐layer nanogold particles and dendrimer‐functionalized polyvinyl chloride (PVC) membrane as immunosensing interface. To fabricate such a multifunctional PVC electrode, an o‐phenylenediaminedoped PVC membrane was initially constructed, then nanogold particles and poly(amidoamine) G4‐dendrimer with a sandwich‐type format were assembled onto the PVC membrane surface, and then t‐PSA antibodies (anti‐PSA) were adsorbed on the nanogold surface. The detection principle of the immunosensor is based on the change in the electric potential before and after the antigen‐antibody interaction. The experimental conditions and the factors influencing the performance of the immunosensor were investigated. Under optimal conditions, the proposed immunosensor exhibits good electrochemical behavior in the dynamic range of 0.5–18 ng/mL relative to t‐PSA concentration with a relative low detection limit of 0.1 ng/mL (S/N=3). The precision, reproducibility, and stability of the immunosensor are acceptable. In addition, 43 serum specimens were assayed by the as‐prepared immunosensor, and consistent results were obtained in comparison with those obtained by the standard enzyme‐linked immunosorbent assay (ELISA). Compared with the conventional ELISAs, the developed immunoassay system was simple and rapid without labeling and separation steps. Importantly, the immobilization and detection methodologies could be extended for the immobilization and detection of other biomarkers.  相似文献   

4.
In this work, a novel sandwich‐type electrochemical immunosensor with electroactive nickel hexacyanoferrate nanoparticles (NiHCFNPs) as matrix was constructed for α‐fetoprotein (AFP) detection in a signal‐off manner by using FeS2?AuNPs nanocomposite catalyzed insoluble precipitation to significantly inhibit the electrochemical signal. Initially, the NiHCFNPs with excellent electrochemical property was modified on the electrodeposited nano‐Au electrode to obtain a strong initial electrochemical signal. Subsequently, another nano‐Au layer was formed for immobilization of capture antibody (Ab1). In the presence of target AFP, the prepared FeS2?AuNPs‐Ab2 bioconjugate could be specifically recognized and immobilized on electrode through the sandwich‐type immunoreaction. The FeS2 with large specific surface areas were used as scaffolds to load abundant mimicking enzyme AuNPs. With the help of hydrogen peroxide (H2O2), FeS2?AuNPs with peroxidase‐like activity accelerated the 4‐chloro‐1‐naphthol (4‐CN) oxidation with generation of insoluble precipitation on electrode, which would greatly hinder the electron transfer and thus caused the decrease of electrochemical signal for quantitative determination of AFP. This approach achieved a wide dynamic linear range from 0.0001 to 100 ng mL?1 with an ultralow limit detection of 0.028 pg mL?1. Especially, the proposed AFP immunosensor can be applied to detect human serum samples with satisfactory results, indicating a potential application in clinical monitoring of tumor biomarkers.  相似文献   

5.
A new electrochemical immunosensor for the detection of α‐1‐fetoprotien (AFP) was developed based on AFP antibody (anti‐AFP)‐functionalized organic/inorganic hybrid nanocomposite membrane. To fabricate such a hybrid composite membrane, 3,4,9,10‐perylenetetracarboxylic acid‐bound thionine molecules (PTCTH) were initially doped into titania colloids (TiO2), and then gold nanoparticles and anti‐AFP were immobilized onto the composite film in turn. Comparison with the electrode fabricated only with thionine not 3,4,9,10‐perylenetetracarboxylic acid, the immunosensor with PTCTH exhibited high sensitivity and fast electron transfer. The presence of gold nanoparticles provided a good microenvironment for the immobilization of biomolecules, enhanced the surface coverage of protein, and improved the sensitivity of the immunosensor. The modified process was characterized by scanning electron microscope (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The surface topography of the membrane was investigated by scanning electron microscopy (SEM). Under optimal conditions, the proposed immunosensor exhibited a wide linear range from 2.5 to 200.0 ng/mL towards AFP with a detection limit of 0.5 ng/mL (S/N=3). The stability, reproducibility and precision of the immunosensor were acceptable. Comparison with the conventional enzyme‐linked immunosorbent assay (ELISA), the present method did not require more labeled procedures and washing steps. Significantly, the detection methodology provides a promising approach for other proteins or biosecurities.  相似文献   

6.
This article describes an electrochemical strategy to achieve low background‐current levels in horse‐radish peroxidase (HRP)‐based electrochemical immunosensors. The strategy consists of (i) the use of an HRP substrate/product redox couple whose formal potential is high and (ii) the use of an electrode that shows moderate electrocatalytic activity for the redox couple. The strategy is proved by a model biosensor using a catechol/o‐benzoquinone redox couple and an indium tin oxide (ITO) electrode. The combined effect of high formal potential and moderate electrocatalytic activity allows o‐benzoquinone electroreduction with minimal catechol electrooxidation and H2O2 electroreduction. The detection limit for mouse‐IgG is 100 pg/mL.  相似文献   

7.
In this paper a molecular wire modified carbon paste electrode (MW‐CPE) was firstly prepared by mixing graphite powder with diphenylacetylene (DPA). Then a graphene (GR) and chitosan (CTS) composite film was further modified on the surface of MW‐CPE to receive the graphene functionalized electrode (CTS‐GR/MW‐CPE), which was used for the sensitive electrochemical detection of adenosine‐5′‐triphosphate (ATP). The CTS‐GR/MW‐CPE exhibited excellent electrochemical performance and the electrochemical behavior of ATP on the CTS‐GR/MW‐CPE was carefully studied by cyclic voltammetry with an irreversible oxidation peak appearing at 1.369 V (vs. SCE). The electrochemical parameters such as charge transfer coefficient (α) and electrode reaction standard rate constant (ks) were calculated with the results of 0.53 and 5.28×10?6 s?1, respectively. By using differential pulse voltammetry (DPV) as detection technique, the oxidation peak current showed good linear relationship with ATP concentration in the range from 1.0 nM to 700.0 µM with a detection limit of 0.342 nM (3σ). The common coexisting substances, such as uric acid, ascorbic acid and guanosine‐5′‐triphosphate (GTP), showed no interferences and the modified electrode was successfully applied to injection sample detection.  相似文献   

8.
《Electroanalysis》2017,29(12):2818-2831
Immobilization of biomolecules with a proper orientation is considered as a basis for diverse biotechnological applications. Herein, we report a host‐guest inclusion complexation between β‐cyclodextrin (β‐CD) and biotin as a versatile approach for the immobilization of biomolecules. As a practical application, a sandwich‐type electrochemical immunosensor was designed for the determination of prostate specific antigen (PSA). The immunosensor was fabricated by in situ electropolymerization of poly(N‐acetylaniline) onto a rGO‐modified Pt electrode. Then, β‐CD was covalently grafted onto the over‐oxidized polymer backbone. For improving the efficiency of the assay, AuNPs were casted on the polymeric film, on the surface of which thionine (TH) as an electron mediator was covalently immobilized. Using a host‐guest inclusion complexation between β‐CD and biotin, a β‐CD/biotin‐Ab1/PSA/Ab2‐horseradish peroxidase (HRP) sandwich was formed on the electrode surface. The analytical signal was produced via electrochemical reduction of THox, generated by biocatalytic oxidation of the THred in the presence of HRP/H2O2. Under optimal conditions, the proposed sensor responded linearly to PSA in the range from 10.0 pg mL−1 to 25.0 ng mL−1, with a low detection limit of 6.7 pg mL−1 (S/N=3). Kinetic parameters of the interaction of β‐CD with Ab1 were also investigated. Finally, the applicability of the immunosensor was successfully investigated for the detection of PSA in human serum samples.  相似文献   

9.
《Electroanalysis》2006,18(15):1505-1510
A highly sensitive, fast and stable conductometric immunosensor for determination of interleukin‐6 (IL6) in humans is developed by encapsulation of horseradish peroxidase‐labeled interleukin‐6 antibody (HRP‐anti‐IL6) in poly(amidoamine) fourth‐generation dendrimer (dendrimer) and colloidal gold (nanogold) modified composite architecture. The presences of nanogold and dendrimer provided a congenial microenvironment for the immobilized biomolecules and decreased the electron transfer impedance, leading to a direct electrochemical behavior of the immobilized HRP. The formation of the antibody‐antigen complex by a simple one‐step immunoreaction between the immobilized HRP‐anti‐IL6 and IL6 in sample solution introduced a barrier of direct electrical communication between the immobilized HRP and the gold electrode surface, thus local conductivity variations could be detected by the HRP electrocatalytic reaction in 0.02 M phosphate buffer solution (pH 7.0) containing 50 μM H2O2, 0.01 M KI and 0.15 M NaC1. Under optimal conditions, the proposed immunosensor exhibited a good conductometric response to IL6 in a linear range from 30 to 300 pg/mL with a relatively low detection limit of 10 pg/mL at 3δ. The precision and reproducibility are acceptable with the intra‐assay CV of 7.3% and 5.6% at 100 and 200 pg/mL IL6, respectively. The storage stability of the proposed immunosensor is acceptable in a pH 7.0 PBS at 4 °C for 8 days. Importantly, the proposed methodology could be extended to the detection of other antigens or biocompounds.  相似文献   

10.
巫远招  干宁  胡富陶  李天华  曹玉廷  郑磊 《分析化学》2011,39(11):1634-1640
采用Fe3O4(核)/ZrO2(壳)纳米磁珠(ZMPs)标记待测物识别抗体,并用HRP酶封闭和DNA链接,建立了一类新型的"珠链状"一维磁性纳米探针制备方法。将甲胎蛋白(AFP)一抗固定于纳米金修饰的玻碳电极表面,构建了免疫电极(GCE?AFP Ab1)。基于该电极和上述合成探针,通过双抗体夹心法测定免疫产物上HRP酶对过氧化脲(CP)氧化对苯二酚反应的催化电流,研制了一类基于一维纳米结构组装的夹心型安培免疫传感器。研究表明:此一维纳米结构探针不仅大大增加了酶在电极表面的富集量,成倍扩增了催化电流,显著提高了传感器的灵敏度,而且易于通过外磁场与背景液可控分离,简化了分析步骤,并提高了结果的重复性。此传感器对AFP检测的线性范围为0.01~25 mg/L;检出限达4 ng/L(3σ),并被用于人血清中痕量AFP的测定,结果满意。  相似文献   

11.
《Electroanalysis》2006,18(17):1696-1702
A novel electrochemical immunosensor for human chorionic gonadotrophin (hCG) was proposed by immobilization of hCG in gold nanoparticles doped three‐dimensional (3D) sol‐gel matrix and an interfacial competitive immunoreaction. The 3D organized composite structure was prepared by assemble of gold nanoparticles into a hydrolyzed (3‐mercaptopropyl)‐trimethoxysilane sol‐gel matrix, which showed good biocompatibility. After the interfacial competitive immunoreaction the formed HRP‐labeled immunoconjugate showed good enzymatic activity for the oxidation of o‐phenylenediamine by H2O2. With a competitive format, a method comprising of o‐phenylenediamine‐H2O2‐immobilized HRP labeled hCG immunoconjugate system for immunoassay of hCG from 5.0 to 30.0 mIU mL?1 was developed. The immunosensor showed good precision, high sensitivity, acceptable stability and reproducibility and could be used for detection of hCG in human serum with the consistent results in comparison with those obtained by a commercial analyzer.  相似文献   

12.
Graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin multilayer films composed of graphene sheet (GS) and mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were fabricated easily by two steps. First, negatively charged graphene oxide (GO) and positively charged mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (NH2β‐CD) were layer‐by‐layer (LBL) self‐assembled on glassy carbon electrode (GCE) modified with a layer of poly(diallyldimethylammonium chloride) (PDDA). Then graphene/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GS/NH2β‐CD) multilayer films were built up by electrochemical reduction of graphene oxide/mono‐(6‐amino‐6‐deoxy)‐β‐cyclodextrin (GO/NH2β‐CD). Combining the high surface area of GS and the active recognition sites on β‐cyclodextrin (β‐CD), the GS/NH2β‐CD multilayer films show excellent electrochemical sensing performance for the detection of DA with an extraordinary broad linear range from 2.53 to 980.05 µmol·L?1. This study offers a simple route to the controllable formation of graphene‐based electrochemical sensor for the detection of DA.  相似文献   

13.
《中国化学会会志》2018,65(9):1127-1135
In this paper, a WS2 nanosheet was modified on the surface of a carbon ionic liquid electrode (CILE), and horseradish peroxidase (HRP) was further fixed on the electrode with a Nafion film. Direct electrochemistry and bioelectrocatalysis of HRP incorporated on the modified electrode were investigated in detail. On Nafion/HRP/WS2/CILE, a pair of well‐defined quasi‐reversible redox peaks appeared on the cyclic voltammogram, indicating that the presence of the WS2 nanosheet on the electrode surface could provide a specific interface with large surface area for HRP and its direct electron transfer rate was greatly enhanced. The formal potential (E0) obtained was –0.179 V, which was the typical feature of heme Fe(III)/Fe(II) in HRP. The electron transfer coefficient (α) and the heterogeneous electron transfer rate constant (ks) of HRP were calculated as 0.44 and 1.01 s–1, respectively. This HRP‐modified electrode showed excellent electrocatalytic activity for the reduction of trichloroacetic acid and NaNO2 with a wide linear range and low detection limit. Real samples were detected by this proposed method, indicating the successful fabrication of a new third‐generation electrochemical enzyme sensor utilizing the WS2 nanosheet.  相似文献   

14.
Amperometric immunosensors for the detection and quantification of S. aureus using MPA self‐assembled monolayer modified electrodes for the immobilization of the immunoreagents are reported. Two different immunosensor configurations were compared. A competitive mode, in which protein A‐bearing S. aureus cells and antiRbIgG labeled with horseradish peroxidase (HRP) compete for the binding sites of RbIgG immobilized onto the 3‐mercaptopropionic acid (MPA) modified electrode, was evaluated. Moreover, a sandwich configuration in which S. aureus cells were immobilized onto the MPA SAM, and RbIgG and antiRbIgG labeled with HRP were further linked to the electrode surface, was also tested. In both cases, TTF was used as the redox mediator of the HRP reaction with H2O2, and it was co‐immobilized onto the MPA‐modified gold electrode. After optimization of the working variables for both configurations, the analytical performance of the amperometric measurements carried out at 0.00 V (vs. Ag/AgCl) showed that the competitive immunosensor exhibited a lower limit of detection (1.6×105 S. aureus cells mL?1), as well as a better repeatability and reproducibility of the measurements.  相似文献   

15.
A novel photoelectrochemcial biosensing system was fabricated based on the composition of horseradish peroxidase (HRP), flower‐like CuInS2 (CIS) and graphene on indium tin oxide (ITO) electrode for detecting H2O2. The graphene layer was used as highly conductive scaffolds for electron transport from the ITO electrode to CIS. Furthermore, the flower‐like CIS enhanced the multi‐reflection of light and provided matrixes for the adsorption of HRP. Utilizing one‐pot solvothermal method, we prepared flower‐like CIS‐graphene hybrid (GCIS). Electrochemical tests displayed advantage of graphene with better electron conductivity, and HRP/GCIS showed higher photoelectrochemical behavior.  相似文献   

16.
A novel, simple and versatile protocol for covalent immobilization of horseradish peroxidase (HRP) on screen‐printed carbon electrode (SPCE) based on the combination of diazonium salt electrografting and click chemistry has been successfully developed. The ethynyl‐terminated monolayers are obtained by diazonium salt electrografting, then, in the presence of copper (I) catalyst, the ethynyl modified surfaces reacted efficiently and rapidly with horseradish peroxidase bearing an azide function (azido‐HRP), thus forming a covalent 1,2,3‐triazole linkage by means of click chemistry. All the experimental results suggested that HRP was immobilized onto the electrode surface successfully without denaturation. Furthermore, the immobilized HRP showed a fast electrocatalytic reduction for H2O2. A linear range from 5.0 to 50.0 µM in a phosphate buffer (pH 5.5) with detection limit of 0.50 µM and sensitivity of 0.23 nA/µM were obtained. The heterogeneous electron transfer rate constant Kct was 1.52±0.22 s?1 and the apparent Michaelis? Menten constant was calculated to be 0.028 mM. The HRP‐functionalized electrode demonstrated a good reproducibility and long‐term stability.  相似文献   

17.
《Electroanalysis》2017,29(9):2083-2089
A facile and green electrochemical method for the fabrication of three‐dimensional porous nitrogen‐doped graphene (3DNG) modified electrode was reported. This method embraces two consecutive steps: First, 3D graphene/polypyrrole (ERGO/PPy) composite was prepared by electrochemical co‐deposition of graphene and polypyrrole on a gold foil. Subsequently, the ERGO/PPy composite modified gold electrode was annealed at high temperature. Thus 3DNG modified electrode was obtained. Scanning electron microscopy (SEM), X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy were used to characterize the structure and morphology of the electrode. The electrode exhibits excellent electroanalytical performance for the reduction of hydrogen peroxide (H2O2). By linear sweep voltammetric measurement, the cathodic peak current was linearly proportional to H2O2 concentration in the range from 0.6 μM to 2.1 mM with a sensitivity of 1.0 μA μM−1 cm−2. The detection limit was ascertained to be 0.3 μM. The anti‐interference ability, reproducibility and stability of the electrode were carried out and the electrode was applied to the detection of H2O2 in serum sample with recoveries from 98.4 % to 103.2 %.  相似文献   

18.
A new sandwich-type electrochemical immunoassay was developed for the detection of human IgG using doubly-encoded and magnetic redox-active nanoparticles as recognition elements on the surface of a glassy carbon electrode modified with anti-IgG on nanogold particles. The recognition elements were synthesized by coating magnetic Fe3O4 nanoparticles with Prussian blue nanoparticles and then covered with peroxidase-labeled anti-IgG antibodies (POx-anti-IgG) on Prussian blue nanoparticles. The immunoelectrode displays very good electrochemical properties towards detection of IgG via using double-encoded magnetic redox-active nanoparticles as trace and hydrogen peroxide as enzyme substrate. Its limit of detection (10 pmol·L?1) is 10-fold better than that of using plain POx-anti-IgG secondary antibodies. The method was applied to the detection of IgG in serum samples, and an excellent correspondence with the reference values was found.  相似文献   

19.
《Electroanalysis》2004,16(9):736-740
A new enzyme‐based amperometric biosensor for hydrogen peroxide was developed relying on the efficient immobilization of horseradish peroxidase (HRP) to a nano‐scaled particulate gold (nano‐Au) film modified glassy carbon electrode (GC). The nano‐Au film was obtained by a chitosan film which was first formed on the surface of GC. The high affinity of chitosan for nano‐Au associated with its amino groups resulted in the formation of nano‐Au film on the surface of GC. The film formed served as an intermediator to retain high efficient and stable immobilization of the enzyme. H2O2 was detected using hydroquinone as an electron mediator to transfer electrons between the electrode and HRP. The HRP immobilized on nano‐Au film maintained excellent electrocatalytical activity to the reduction of H2O2. The experimental parameters such as the operating potential of the working electrode, mediator concentration and pH of background electrolyte were optimized for best analytical performance of amperometry. The linear range of detection for H2O2 is from 6.1×10?6 to 1.8×10?3 mol L?1 with a detection limit of 6.1 μmol L?1 based on signal/noise=3. The proposed HRP enzyme sensor has the features of high sensitivity (0.25 Almol?1cm?2), fast response time (t90%≤10 s) and a long‐term stability (>1 month). As an extension, glucose oxidase (GOD) was chemically bound to HRP‐modified electrode. A GOD/HRP bienzyme‐modified electrode formed in this way can be applied to the determination of glucose with satisfactory performance.  相似文献   

20.
Graphene nanosheets were produced on the surface of carbon fibers by in situ electrochemical procedure including oxidative and reductive steps to yield first graphene oxide, later converted to graphene. The electrode material composed of graphene‐functionalized carbon fibers was characterized by scanning electron microscopy (SEM) and cyclic voltammery demonstrating superior electrochemical kinetics comparing with the original carbon paper. The interfacial electron transfer rate for the reversible redox process of [Fe(CN)6]3?/4? was found ca. 4.5‐fold higher after the electrode modification with the graphene nanosheets. The novel electrode material is suggested as a promising conducting interface for bioelectrocatalytic electrodes used in various electrochemical biosensors and biofuel cells, particularly operating in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号