首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2-Acetyl-6-(dimethylamino)naphthalene-derived two-photon fluorescent Ca2+ probes (ACa1-ACa3) are reported. They can be excited by a 780 nm laser beam, show 23-50-fold enhancement in one- and two-photon excited fluorescence in response to Ca2+, emit fourfold stronger two-photon excited fluorescence than Oregon Green 488 BAPTA-1 upon complexation with Ca2+, and can selectively detect intracellular free Ca2+ ions in live cells and living tissues with minimum interference from other metal ions and membrane-bound probes. Moreover, these probes are capable of monitoring calcium waves at a depth of 120-170 microm in live tissues for 1100-4000 s using two-photon microscopy with no artifacts of photobleaching.  相似文献   

2.
We report a two-photon fluorescent probe (ACu1) that can be excited by 750 nm femto-second pulses, shows high photostability and negligible toxicity, and can visualize Cu(+) distribution in live cells and tissues by two-photon microscopy.  相似文献   

3.
We report a two-photon turn-on probe (AS1) that can be excited by 780 nm femto-second pulses and visualize glucose uptake and the changes in the intracellular glucose concentration in live cells and tissue by two-photon microscopy.  相似文献   

4.
We report a two-photon fluorescent probe (PN1) that can be excited by 750 nm femto-second pulses, shows high photostability and negligible toxicity, and can visualize H(2)O(2) distribution in live cells and tissue by two-photon microscopy.  相似文献   

5.
New ratiometric two-photon fluorescent probes are developed from 6-substituted quinolines for biological Zn(2+) detection. They show large red shifts and good ratiometric responses upon Zn(2+) binding. They also exhibit high ion selectivities and large two-photon absorption cross sections at nearly 720 nm. Because the new probes are cell-permeable, they can be used to detect intracellular zinc flux under two-photon excitation.  相似文献   

6.
A range of varying chromophore nitroxide free radicals and their nonradical methoxyamine analogues were synthesized and their linear photophysical properties examined. The presence of the proximate free radical masks the chromophore's usual fluorescence emission, and these species are described as profluorescent. Two nitroxides incorporating anthracene and fluorescein chromophores (compounds 7 and 19, respectively) exhibited two-photon absorption (2PA) cross sections of approximately 400 G.M. when excited at wavelengths greater than 800 nm. Both of these profluorescent nitroxides demonstrated low cytotoxicity toward Chinese hamster ovary (CHO) cells. Imaging colocalization experiments with the commercially available CellROX Deep Red oxidative stress monitor demonstrated good cellular uptake of the nitroxide probes. Sensitivity of the nitroxide probes to H(2)O(2)-induced damage was also demonstrated by both one- and two-photon fluorescence microscopy. These profluorescent nitroxide probes are potentially powerful tools for imaging oxidative stress in biological systems, and they essentially "light up" in the presence of certain species generated from oxidative stress. The high ratio of the fluorescence quantum yield between the profluorescent nitroxide species and their nonradical adducts provides the sensitivity required for measuring a range of cellular redox environments. Furthermore, their reasonable 2PA cross sections provide for the option of using two-photon fluorescence microscopy, which circumvents commonly encountered disadvantages associated with one-photon imaging such as photobleaching and poor tissue penetration.  相似文献   

7.
A novel, two-photon probe for the detection of free Mg2+ ions in living cells and live tissues has been developed. The probe can be excited by 880 nm laser photons, emits strong two-photon excited fluorescence in response to Mg2+ ions, can be easily loaded into the cell and tissue, shows high photostability, and can measure the Mg2+ ion concentration without interference by Ca2+ ions in living cells. The intracellular dissociation constant (Kdi) for Mg2+ determined by the two-photon process is 2.5 mM, which is suitable for dynamic Mg2+ concentration measurement. In addition, the probe is capable of imaging endogenous stores of free Mg2+ at a few hundred micrometers depth in live tissues using two-photon microscopy (TPM).  相似文献   

8.
Zinc and calcium are ubiquitous intracellular metals, and while a variety of quantitative probes have been developed for measuring intracellular changes in calcium concentration, the same is not true of zinc. We describe here the design, synthesis, and properties of the benzoxazole-based, ratiometric zinc probe, Zinbo-5. This bright fluorescent reporter has a quantum yield of 0.1 in the zinc-form, exhibits a Kd for Zn2+ in the nanomolar range, and shows significant changes in both excitation and emission maxima upon zinc binding. The utility of this cell permeable probe is demonstrated in fluorescence microscopy emission ratio imaging experiments on mammalian cells. We further show that Zinbo-5 is well suited for two-photon excitation microscopy ratio imaging and can readily reveal changes in intracellular zinc concentration within optical planes of single cells. To the best of our knowledge, this is the first example of two-photon excitation microscopy applied to ratio imaging of zinc. These methods can be applied to real-time emission or excitation ratio imaging studies of zinc physiology in living cells.  相似文献   

9.
A two-photon sensor for the metal ions derived from azacrown ether as the receptor is reported. The sensor emits strong two-photon fluorescence when excited by 800 nm laser photons. Moreover, the binding constants measured by the one- and two-photon fluorescence are similar. This result may be useful for the design of efficient two-photon fluorescence probes for biological substrates.  相似文献   

10.
Light-up bioorthogonal probes have attracted increasing attention recently due to their capability to directly image diverse biomolecules in living cells without washing steps. The development of bioorthogonal probes with excellent fluorescent properties suitable for in vivo imaging, such as long excitation/emission wavelength, high fluorescence turn-on ratio, and deep penetration, has been rarely reported. Herein, a series of azide-based light-up bioorthogonal probes with tunable colors based on a weak fluorescent 8-aminoquinoline ( AQ ) scaffold were designed and synthesized. The azido quinoline derivatives are able to induce large fluorescence enhancement (up to 1352-fold) after click reaction with alkynes. In addition, the probes could be engineered to exhibit excellent two-photon properties (δ=542 GM at 780 nm) after further introducing different styryl groups into the AQ scaffold. Subsequent detailed bioimaging experiments demonstrated that these versatile probes can be successfully used for live cell/zebrafish imaging without washing steps. Further in vivo two-photon imaging experiments demonstrated that these light-up biorthogonal probe outperformed conventional fluorophores, for example, high signal-to-noise ratio and deep tissue penetration. The design strategy reported in this study is a useful approach to realize diverse high-performance biorthogonal light-up probes for in vivo studying.  相似文献   

11.
Reaction-based fluorescent probes for monoamine oxidases A and B are developed based on a new two-photon absorbing compound and its precursor. The probes show turn-on fluorescence response to the enzymes owing to the two-photon absorbing compound produced by the enzymatic activity, as monitored by one- as well as two-photon microscopy for the first time.  相似文献   

12.
This review summarized the recent advances in small-molecule two-photon fl uorescent probes for monitoring a wide variety of biomolecules and changes inside micro-environment in mitochondria and lysosomes, or served as mitotracker and lysotracker with the assistance of two-photon microscopy.  相似文献   

13.
A novel method for the synthesis of highly monodispersed hydrophillic InP-ZnS nanocrystals and their use as luminescence probes for live cell imaging is reported. Hydrophobic InP-ZnS nanocrystals are prepared by a new method that yields high-quality, luminescent core-shell nanocrystals within 6-8 h of total reaction time. Then by carefully manipulating the surface of these passivated nanocrystals, aqueous dispersions of folate-conjugated nanocrystals (folate-QDs) with high photostability are prepared. By use of confocal microscopy, we demonstrate the receptor-mediated delivery of folic acid conjugated quantum dots into folate-receptor-positive cell lines such as KB cells. These folate-QDs tend to accumulate in multi-vescicular bodies of KB cells after 6 h of incubation. Receptor-mediated delivery was confirmed by comparison with the uptake of these particles in folate-receptor-negative cell lines such as A549. Efficient two-photon excitation of these particles and two-photon imaging using these particles are also demonstrated. The use of these InP-ZnS nanoparticles and their efficient two-photon excitation can be potentially useful for deep tissue imaging for future in vivo studies.  相似文献   

14.
Fluorescent proteins photoswitchable with noncytotoxic light irradiation and spectrally distinct from multiple available photoconvertible green-to-red probes are in high demand. We have developed a monomeric fluorescent protein, called PSmOrange2, which is photoswitchable with blue light from an orange (ex./em. at 546 nm/561 nm) to a far-red (ex./em. at 619 nm/651 nm) form. Compared to another orange-to-far-red photoconvertable variant, PSmOrange2 has blue-shifted photoswitching action spectrum, 9-fold higher photoconversion contrast, and up to 10-fold faster photoswitching kinetics. This results in the 4-fold more PSmOrange2 molecules being photoconverted in mammalian cells. Compared to common orange fluorescent proteins, such as mOrange, the orange form of PSmOrange has substantially higher photostability allowing its use in multicolor imaging applications to track dynamics of multiple populations of intracellular objects. The PSmOrange2 photochemical properties allow its efficient photoswitching with common two-photon lasers and, moreover, via F?rster resonance energy transfer (FRET) from green fluorescent donors. We have termed the latter effect a FRET-facilitated photoswitching and demonstrated it using several sets of interacting proteins. The enhanced photoswitching properties of PSmOrange2 make it a superior photoconvertable protein tag for flow cytometry, conventional microscopy, and two-photon imaging of live cells.  相似文献   

15.
A novel class of ZnSalens (ZnL(1-10)) with lipophilic and cationic conjugates as optical probes in single and two-photon fluorescence microscopy images of living cells were prepared, which exhibited chemo- and photostability, low cytotoxicity and high subcellular selectivity.  相似文献   

16.
本文采用具有较大双光子吸收截面的有机分子2,5,2′,5′-(4′-N,N-二苯胺苯乙烯基)联苯(DPA-TSB)(双光子吸收截面δ: 3288 GM, 1 GM=1×10-50 cm4·s·photon-1·molecule-1), 通过再沉淀法制备水相分散的纳米粒子. 研究表明, 这种有机双光子纳米粒子可以有效地富集在细胞质中, 对细胞染色显示出良好的荧光成像能力.  相似文献   

17.
Red-to-NIR absorption and emission wavelengths are key requirements for intravital bioimaging. One of the way to reach such excitation wavelengths is to use two-photon excitation. Unfortunately, there is still a lack of two-photon excitable fluorophores that are both efficient and biocompatible. Thus, we design a series of biocompatible quadrupolar dyes in order to study their ability to be used for live-cell imaging, and in particular for two-photon microscopy. Hence, we report the synthesis of 5 probes based on different donor cores (phenoxazine, acridane, phenazasiline and phenothiazine) and the study of their linear and non-linear photophysical properties. TD-DFT calculations were performed and were able to highlight the structure-property relationship of this series. All these studies highlight the great potential of three of these biocompatible dyes for two-photon microscopy, as they both exhibit high two-photon cross-sections (up to 3650 GM) and emit orange to red light. This potential was confirmed through live-cell two-photon microscopy experiments, leading to images with very high brightness and contrast.  相似文献   

18.
Two-photon excitation studies of hypocrellins for photodynamic therapy   总被引:8,自引:0,他引:8  
The photophysical and photochemical properties of hypocrellins (HA and HB) are examined with two-photon excitations at 800 nm using femtosecond pulses from a Ti:sapphire laser. The two-photon excited fluorescence spectra of HA and HB are very similar to those obtained by one-photon excitation, which may indicate that the two-photon induced photodynamic processes of hypocrellins are similar to one-photon induced photodynamic processes. The two-photon excitation cross sections of HA and HB are measured at 800 nm as about 34.8 x 10(-50) cm(4) s/photon and 21.3 x 10(-50) cm(4) s/photon, respectively. The large two-photon cross sections of both HA and HB, suggest that the hypocrellins can be potential two-photon phototherapeutic agents. As an example for two-photon photodynamic therapy of hypocrellins, we also further examine the cell-damaging effects of HA upon two-photon illumination. Our preliminary results of cell viability test indicate hypocrellins can effectively damage the Hela cells under two-photon illumination.  相似文献   

19.
将具有双-2-脲基-4[1H]-嘧啶酮(bisUPy)的β-二羰基氟硼类衍生物(BF2-bisUPy)及卟啉衍生物(Por(Pt)-bisUPy)通过四重氢键作用组装成超分子聚合物,通过微乳液法制备成在水中均匀分散的超分子聚合物纳米颗粒(SPNP)。扫描电子显微镜形貌表征表明获得的纳米颗粒粒径约为60 nm。紫外-可见吸收光谱、荧光发射光谱及寿命衰减实验均证明纳米颗粒内BF2-bisUPy与Por(Pt)-bisUPy可发生高效的能量传递。具有双光子吸收的BF2-bisUPy作为能量供体,可通过荧光共振能量传递(FRET)增强双光子激发下Por(Pt)-bisUPy的发光。双光子激发荧光强度与激光功率测试表明所制备的超分子聚合物纳米颗粒具有强烈的双光子激发下的荧光及磷光双发射,这种纳米材料可进入细胞,具有优秀的生物相容性,并在双光子激发时表现出强烈的荧光和磷光双发射生物成像。  相似文献   

20.
Two-photon excitation microscopy (2PEM) has been known as a noninvasive and powerful bio-imaging tool for studying living cells, intact tissues and living animals because of their unique advantages such as localized excitation, deep tissue penetration as well as less photo-damage. However, the major limitations that hinder its practical applications in biological systems are low two-photon absorption cross sections of conventional fluorescence probes. Conjugated polymer nanoparticles (CPNs) consisting of highly fluorescent conjugated polymers are promising fluorescent probes for 2PEM due to their unique advantages including large two-photon absorption cross sections, high fluorescence quantum yield, good photo-stability and biocompatibility, facile chemical synthesis, tunable optical properties as well as versatile surface modifications. This account summarizes the recent efforts of our group on development of novel polyfluorene based CPNs as 2PEM contrast agents for live cell imaging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号