首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
An automorphism \(\alpha \) of a Cayley graph \(\mathrm{Cay}(G,S)\) of a group G with connection set S is color-preserving if \(\alpha (g,gs) = (h,hs)\) or \((h,hs^{-1})\) for every edge \((g,gs)\in E(\mathrm{Cay}(G,S))\). If every color-preserving automorphism of \(\mathrm{Cay}(G,S)\) is also affine, then \(\mathrm{Cay}(G,S)\) is a Cayley color automorphism (CCA) graph. If every Cayley graph \(\mathrm{Cay}(G,S)\) is a CCA graph, then G is a CCA group. Hujdurovi? et al. have shown that every non-CCA group G contains a section isomorphic to the non-abelian group \(F_{21}\) of order 21. We first show that there is a unique non-CCA Cayley graph \(\Gamma \) of \(F_{21}\). We then show that if \(\mathrm{Cay}(G,S)\) is a non-CCA graph of a group G of odd square-free order, then \(G = H\times F_{21}\) for some CCA group H, and \(\mathrm{Cay}(G,S) = \mathrm{Cay}(H,T)\mathbin {\square }\Gamma \).  相似文献   

2.
Given a connected simple graph \(G=(V(G),E(G))\), a set \(S\subseteq V(G)\) is said to be a 2-metric generator for G if and only if for any pair of different vertices \(u,v\in V(G)\), there exist at least two vertices \(w_1,w_2\in S\) such that \(d_G(u,w_i)\ne d_G(v,w_i)\), for every \(i\in \{1,2\}\), where \(d_G(x,y)\) is the length of a shortest path between x and y. The minimum cardinality of a 2-metric generator is the 2-metric dimension of G, denoted by \(\dim _2(G)\). The metric \(d_{G,2}: V(G)\times V(G)\longmapsto {\mathbb {N}}\cup \{0\}\) is defined as \(d_{G,2}(x,y)=\min \{d_G(x,y),2\}\). Now, a set \(S\subseteq V(G)\) is a 2-adjacency generator for G, if for every two vertices \(x,y\in V(G)\) there exist at least two vertices \(w_1,w_2\in S\), such that \(d_{G,2}(x,w_i)\ne d_{G,2}(y,w_i)\) for every \(i\in \{1,2\}\). The minimum cardinality of a 2-adjacency generator is the 2-adjacency dimension of G, denoted by \({\mathrm {adim}}_2(G)\). In this article, we obtain closed formulae for the 2-metric dimension of the lexicographic product \(G\circ H\) of two graphs G and H. Specifically, we show that \(\dim _2(G\circ H)=n\cdot {\mathrm {adim}}_2(H)+f(G,H),\) where \(f(G,H)\ge 0\), and determine all the possible values of f(GH).  相似文献   

3.
The standard actions of finite groups on spheres \(S^d\) are linear actions, i.e. by finite subgroups of the orthogonal groups \(\mathrm{O}(d+1)\). We prove that, in each dimension \(d>5\), there is a finite group G which admits a faithful, topological action on a sphere \(S^d\) but is not isomorphic to a subgroup of \(\mathrm{O}(d+1)\). The situation remains open for smooth actions.  相似文献   

4.
The maximum number vertices of a graph G inducing a 2-regular subgraph of G is denoted by \(c_\mathrm{ind}(G)\). We prove that if G is an r-regular graph of order n, then \(c_\mathrm{ind}(G) \ge \frac{n}{2(r-1)} + \frac{1}{(r-1)(r-2)}\) and we prove that if G is a cubic, claw-free graph on order n, then \(c_\mathrm{ind}(G) > \frac{13}{20}n\) and this bound is asymptotically best possible.  相似文献   

5.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that the vertex set of G can be partitioned into sets \(V_i\), \(i\in [k]\), where each \(V_i\) is an i-packing. In this paper, we investigate for a given triple (abc) of positive integers whether there exists a graph G such that \(\omega (G) = a\), \(\chi (G) = b\), and \(\chi _{\rho }(G) = c\). If so, we say that (abc) is realizable. It is proved that \(b=c\ge 3\) implies \(a=b\), and that triples \((2,k,k+1)\) and \((2,k,k+2)\) are not realizable as soon as \(k\ge 4\). Some of the obtained results are deduced from the bounds proved on the packing chromatic number of the Mycielskian. Moreover, a formula for the independence number of the Mycielskian is given. A lower bound on \(\chi _{\rho }(G)\) in terms of \(\Delta (G)\) and \(\alpha (G)\) is also proved.  相似文献   

6.
For any given two graphs G and H, the notation \(F\rightarrow \) (GH) means that for any red–blue coloring of all the edges of F will create either a red subgraph isomorphic to G or a blue subgraph isomorphic to H. A graph F is a Ramsey (GH)-minimal graph if \(F\rightarrow \) (GH) but \(F-e\nrightarrow (G,H)\), for every \(e \in E(F)\). The class of all Ramsey (GH)-minimal graphs is denoted by \(\mathcal {R}(G,H)\). In this paper, we construct some infinite families of trees belonging to \(\mathcal {R}(P_3,P_n)\), for \(n=8\) and 9. In particular, we give an algorithm to obtain an infinite family of trees belonging to \(\mathcal {R}(P_3,P_n)\), for \(n\ge 10\).  相似文献   

7.
A fundamental result by Gromov and Thurston asserts that, if M is a closed hyperbolic n-manifold, then the simplicial volume \(\Vert M\Vert \) of M is equal to \(\mathrm{Vol}(M)/v_n\), where \(v_n\) is a constant depending only on the dimension of M. The same result also holds for complete finite-volume hyperbolic manifolds without boundary, while Jungreis proved that the ratio \(\mathrm{Vol}(M)/\Vert M\Vert \) is strictly smaller than \(v_n\) if M is compact with nonempty geodesic boundary. We prove here a quantitative version of Jungreis’ result for \(n\ge 4\), which bounds from below the ratio \(\Vert M\Vert /\mathrm{Vol}(M)\) in terms of the ratio \(\mathrm{Vol}(\partial M)/\mathrm{Vol}(M)\). As a consequence, we show that, for \(n\ge 4\), a sequence \(\{M_i\}\) of compact hyperbolic n-manifolds with geodesic boundary satisfies \(\lim _i \mathrm{Vol}(M_i)/\Vert M_i\Vert =v_n\) if and only if \(\lim _i \mathrm{Vol}(\partial M_i)/\mathrm{Vol}(M_i)=0\). We also provide estimates of the simplicial volume of hyperbolic manifolds with geodesic boundary in dimension 3.  相似文献   

8.
Suppose that \(G\) is a finite group such that \(\mathrm{SL }(n,q)\subseteq G \subseteq \mathrm{GL }(n,q)\), and that \(Z\) is a central subgroup of \(G\). Let \(T(G/Z)\) be the abelian group of equivalence classes of endotrivial \(k(G/Z)\)-modules, where \(k\) is an algebraically closed field of characteristic \(p\) not dividing \(q\). We show that the torsion free rank of \(T(G/Z)\) is at most one, and we determine \(T(G/Z)\) in the case that the Sylow \(p\)-subgroup of \(G\) is abelian and nontrivial. The proofs for the torsion subgroup of \(T(G/Z)\) use the theory of Young modules for \(\mathrm{GL }(n,q)\) and a new method due to Balmer for computing the kernel of restrictions in the group of endotrivial modules.  相似文献   

9.
Let X be a compact Riemann surface of genus \(g\ge 2\), and let G be a subgroup of \(\mathrm{Aut}(X)\). We show that if the Sylow 2-subgroups of G are cyclic, then \(|G|\le 30(g-1)\). If all Sylow subgroups of G are cyclic, then, with two exceptions, \(|G|\le 10(g-1)\). More generally, if G is metacyclic, then, with one exception, \(|G|\le 12(g-1)\). Each of these bounds is attained for infinitely many values of g.  相似文献   

10.
The group of bisections of groupoids plays an important role in the study of Lie groupoids. In this paper another construction is introduced. Indeed, for a topological groupoid G, the set of all continuous self-maps f on G such that (xf(x)) is a composable pair for every \(x\in G\), is denoted by \(S_G\). We show that \(S_G\) by a natural binary operation is a monoid. \(S_G(\alpha )\), the group of units in \(S_G\) precisely consists of those \(f\in S_G\) such that the map \(x\mapsto xf(x)\) is a bijection on G. Similar to the group of bisections, \(S_G(\alpha )\) acts on G from the right and on the space of continuous self-maps on G from the left. It is proved that \(S_G(\alpha )\) with the compact- open topology inherited from C(GG) is a left topological group. For a compact Hausdorff groupoid G it is proved that the group of bisections of \(G^2\) is isomorphic to the group \(S_G(\alpha )\) and the group of transitive bisections of G, \(Bis_T(G)\), is embedded in \(S_G(\alpha )\), where \(G^2\) is the groupoid of all composable pairs.  相似文献   

11.
Let \({{\mathrm{{PG}}}}(1,E)\) be the projective line over the endomorphism ring \( E={{\mathrm{End}}}_q({\mathbb F}_{q^t})\) of the \({\mathbb F}_q\)-vector space \({\mathbb F}_{q^t}\). As is well known, there is a bijection \(\varPsi :{{\mathrm{{PG}}}}(1,E)\rightarrow {\mathcal G}_{2t,t,q}\) with the Grassmannian of the \((t-1)\)-subspaces in \({{\mathrm{{PG}}}}(2t-1,q)\). In this paper along with any \({\mathbb F}_q\)-linear set L of rank t in \({{\mathrm{{PG}}}}(1,q^t)\), determined by a \((t-1)\)-dimensional subspace \(T^\varPsi \) of \({{\mathrm{{PG}}}}(2t-1,q)\), a subset \(L_T\) of \({{\mathrm{{PG}}}}(1,E)\) is investigated. Some properties of linear sets are expressed in terms of the projective line over the ring E. In particular, the attention is focused on the relationship between \(L_T\) and the set \(L'_T\), corresponding via \(\varPsi \) to a collection of pairwise skew \((t-1)\)-dimensional subspaces, with \(T\in L'_T\), each of which determine L. This leads among other things to a characterization of the linear sets of pseudoregulus type. It is proved that a scattered linear set L related to \(T\in {{\mathrm{{PG}}}}(1,E)\) is of pseudoregulus type if and only if there exists a projectivity \(\varphi \) of \({{\mathrm{{PG}}}}(1,E)\) such that \(L_T^\varphi =L'_T\).  相似文献   

12.
We consider in a group \((G,\cdot )\) the ternary relation
$$\begin{aligned} \kappa := \{(\alpha , \beta , \gamma ) \in G^3 \ | \ \alpha \cdot \beta ^{-1} \cdot \gamma = \gamma \cdot \beta ^{-1} \cdot \alpha \} \end{aligned}$$
and show that \(\kappa \) is a ternary equivalence relation if and only if the set \( \mathfrak Z \) of centralizers of the group G forms a fibration of G (cf. Theorems 2, 3). Therefore G can be provided with an incidence structure
$$\begin{aligned} \mathfrak G:= \{\gamma \cdot Z \ | \ \gamma \in G , Z \in \mathfrak Z(G) \}. \end{aligned}$$
We study the automorphism group of \((G,\kappa )\), i.e. all permutations \(\varphi \) of the set G such that \( (\alpha , \beta , \gamma ) \in \kappa \) implies \((\varphi (\alpha ),\varphi (\beta ),\varphi (\gamma ))\in \kappa \). We show \(\mathrm{Aut}(G,\kappa )=\mathrm{Aut}(G,\mathfrak G)\), \(\mathrm{Aut} (G,\cdot ) \subseteq \mathrm{Aut}(G,\kappa )\) and if \( \varphi \in \mathrm{Aut}(G,\kappa )\) with \(\varphi (1)=1\) and \(\varphi (\xi ^{-1})= (\varphi (\xi ))^{-1}\) for all \(\xi \in G\) then \(\varphi \) is an automorphism of \((G,\cdot )\). This allows us to prove a representation theorem of \(\mathrm{Aut}(G,\kappa )\) (cf. Theorem 6) and that for \(\alpha \in G \) the maps
$$\begin{aligned} \tilde{\alpha }\ : \ G \rightarrow G;~ \xi \mapsto \alpha \cdot \xi ^{-1} \cdot \alpha \end{aligned}$$
of the corresponding reflection structure \((G, \widetilde{G})\) (with \( \tilde{G} := \{\tilde{\gamma }\ | \ \gamma \in G \}\)) are point reflections. If \((G ,\cdot )\) is uniquely 2-divisible and if for \(\alpha \in G\), \(\alpha ^{1\over 2}\) denotes the unique solution of \(\xi ^2=\alpha \) then with \(\alpha \odot \beta := \alpha ^{1\over 2} \cdot \beta \cdot \alpha ^{1\over 2}\), the pair \((G,\odot )\) is a K-loop (cf. Theorem 5).
  相似文献   

13.
A set \(S\subseteq V\) is a paired-dominating set if every vertex in \(V{\setminus } S\) has at least one neighbor in S and the subgraph induced by S contains a perfect matching. The paired-domination number of a graph G, denoted by \(\gamma _{pr}(G)\), is the minimum cardinality of a paired-dominating set of G. A conjecture of Goddard and Henning says that if G is not the Petersen graph and is a connected graph of order n with minimum degree \(\delta (G)\ge 3\), then \(\gamma _{pr}(G)\le 4n/7\). In this paper, we confirm this conjecture for k-regular graphs with \(k\ge 4\).  相似文献   

14.
The packing chromatic number \(\chi _{\rho }(G)\) of a graph G is the smallest integer k such that there exists a k-vertex coloring of G in which any two vertices receiving color i are at distance at least \(i+1\). Let \(S^n\) be the base-3 Sierpiński graph of dimension n. It is proved that \(\chi _{\rho }(S^1) = 3\), \(\chi _{\rho }(S^2) = 5\), \(\chi _{\rho }(S^3) = \chi _{\rho }(S^4) = 7\), and that \(8\le \chi _\rho (S^n) \le 9\) holds for any \(n\ge 5\).  相似文献   

15.
Let \(X=G/K\) be a symmetric space of noncompact type and rank \(k\ge 2\). We prove that horospheres in X are Lipschitz \((k-2)\)-connected if their centers are not contained in a proper join factor of the spherical building of X at infinity. As a consequence, the distortion dimension of an irreducible \(\mathbb {Q}\)-rank-1 lattice \(\Gamma \) in a linear, semisimple Lie group G of \(\mathbb R\)-rank k is \(k-1\). That is, given \(m< k-1\), a Lipschitz m-sphere S in (a polyhedral complex quasi-isometric to) \(\Gamma \), and a \((m+1)\)-ball B in X (or G) filling S, there is a \((m+1)\)-ball \(B'\) in \(\Gamma \) filling S such that \({{\mathrm{vol}}}B'\sim {{\mathrm{vol}}}B\). In particular, such arithmetic lattices satisfy Euclidean isoperimetric inequalities up to dimension \(k-1\).  相似文献   

16.
Let A be an ordered Banach algebra with a unit \(\mathbf{e}\) and a cone \(A^+\). An element p of A is said to be an order idempotent if \(p^2 = p\) and \(0 \le p\le \mathbf{e}\). An element \(a\in A^+\) is said to be irreducible if the relation \((\mathbf{e}-p)ap = 0\), where p is an order idempotent, implies \(p = 0\) or \(p = \mathbf{e}\). For an arbitrary element a of A the peripheral spectrum \(\sigma _\mathrm{per}(a)\) of a is the set \(\sigma _\mathrm{per}(a) = \{\lambda \in \sigma (a):|\lambda | = r(a)\}\), where \(\sigma (a)\) is the spectrum of a and r(a) is the spectral radius of a. We investigate properties of the peripheral spectrum of an irreducible element a. Conditions under which \(\sigma _\mathrm{per}(a)\) contains or coincides with \(r(a)H_m\), where \(H_m\) is the group of all \(m^\mathrm{th}\) roots of unity, and the spectrum \(\sigma (a)\) is invariant under rotation by the angle \(\frac{2\pi }{m}\) for some \(m\in {\mathbb N}\), are given. The correlation between these results and the existence of a cyclic form of a is considered. The conditions under which a is primitive, i.e., \(\sigma _\mathrm{per}(a) = \{r(a)\}\), are studied. The necessary assumptions on the algebra A which imply the validity of these results, are discussed. In particular, the Lotz–Schaefer axiom is introduced and finite-rank elements of A are defined. Other approaches to the notions of irreducibility and primitivity are discussed. Conditions under which the inequalities \(0 \le b < a\) imply \(r(b) < r(a)\) are studied. The closedness of the center \(A_\mathbf{e}\), i.e., of the order ideal generated by \(\mathbf{e}\) in A, is proved.  相似文献   

17.
Maru?i?–Scapellato graphs are vertex-transitive graphs of order \(m(2^k + 1)\), where m divides \(2^k - 1\), whose automorphism group contains an imprimitive subgroup that is a quasiprimitive representation of \(\mathrm{SL}(2,2^k)\) of degree \(m(2^k + 1)\). We show that any two Maru?i?–Scapellato graphs of order pq, where p is a Fermat prime, and q is a prime divisor of \(p - 2\), are isomorphic if and only if they are isomorphic by a natural isomorphism derived from an automorphism of \(\mathrm{SL}(2,2^k)\). This work is a contribution towards the full characterization of vertex-transitive graphs of order a product of two distinct primes.  相似文献   

18.
For an almost product structure J on a manifold M of dimension 6 with non-degenerate Nijenhuis tensor \(N_J\), we show that the automorphism group \(G=\mathrm{Aut}(M,J)\) has dimension at most 14. In the case of equality G is the exceptional Lie group \(G_2^*\). The next possible symmetry dimension is proved to be equal to 10, and G has Lie algebra \(\mathfrak {sp}(4,{\mathbb R})\). Both maximal and submaximal symmetric structures are globally homogeneous and strictly nearly para-Kähler. We also demonstrate that whenever the symmetry dimension is at least 9, then the automorphism algebra acts locally transitively.  相似文献   

19.
If G is a compact Lie group endowed with a left invariant metric g, then G acts via pullback by isometries on each eigenspace of the associated Laplace operator \(\Delta _g\). We establish algebraic criteria for the existence of left invariant metrics g on G such that each eigenspace of \(\Delta _g\), regarded as the real vector space of the corresponding real eigenfunctions, is irreducible under the action of G. We prove that generic left invariant metrics on the Lie groups \(G={ SU}(2)\times \cdots \times { SU}(2)\times T\), where T is a (possibly trivial) torus, have the property just described. The same holds for quotients of such groups G by discrete central subgroups. In particular, it also holds for \({ SO}(3)\), \({ U}(2)\), \({ SO}(4)\).  相似文献   

20.
Let G be a Polish locally compact group acting on a Polish space \({{X}}\) with a G-invariant probability measure \(\mu \). We factorize the integral with respect to \(\mu \) in terms of the integrals with respect to the ergodic measures on X, and show that \(\mathrm {L}^{p}({{X}},\mu )\) (\(1\le p<\infty \)) is G-equivariantly isometrically lattice isomorphic to an \({\mathrm {L}^p}\)-direct integral of the spaces \(\mathrm {L}^{p}({{X}},\lambda )\), where \(\lambda \) ranges over the ergodic measures on X. This yields a disintegration of the canonical representation of G as isometric lattice automorphisms of \(\mathrm {L}^{p}({{X}},\mu )\) as an \({\mathrm {L}^p}\)-direct integral of order indecomposable representations. If \(({{X}}^\prime ,\mu ^\prime )\) is a probability space, and, for some \(1\le q<\infty \), G acts in a strongly continuous manner on \(\mathrm {L}^{q}({{X}}^\prime ,\mu ^\prime )\) as isometric lattice automorphisms that leave the constants fixed, then G acts on \(\mathrm {L}^{p}({{X}}^{\prime },\mu ^{\prime })\) in a similar fashion for all \(1\le p<\infty \). Moreover, there exists an alternative model in which these representations originate from a continuous action of G on a compact Hausdorff space. If \(({{X}}^\prime ,\mu ^\prime )\) is separable, the representation of G on \(\mathrm {L}^p(X^\prime ,\mu ^\prime )\) can then be disintegrated into order indecomposable representations. The notions of \({\mathrm {L}^p}\)-direct integrals of Banach spaces and representations that are developed extend those in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号