首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Summary Magnesium oxide was produced through calcination of magnesite ore. A rehydration percentage of MgO to Mg(OH)2 of higher than 60% is obtained using calcination temperatures of 1000°C and below. At these temperatures medium reactive MgO was formed. The extend to which dead burnt MgO (obtained after calcination at 1200°C and higher) may be rehydrated is dependent on the calcination time, but even after 1 h and using magnesium acetate as a hydrating agent only 40% of the initial product has rehydrated to Mg(OH)2. After 4 and more hours of calcinations at 1200°C, a maximum of approximately 14% of the initial MgO is rehydrated back to Mg(OH)2. Thermogravimetric analysis was performed on the various compounds to determine the amounts of Mg(OH)2 that formed.  相似文献   

2.
A Mg2+-induced vesicle phase was prepared from a mixture of tetradecyldimethylamine oxide (C14DMAO) and magnesium dodecyl sulfate [Mg(DS)2] in aqueous solution. Study of the phase behavior shows that at the appropriate mixing ratios, Mg2+–ligand coordination between C14DMAO and Mg(DS)2 results in the formation of molecular bilayers, in which Mg2+ can firmly bind to the head groups of the two surfactants. The area of the head group can be reduced because of the complexation. In this case, no counterions exist in aqueous solution because of the fixation of Mg2+ ions to the bilayer membranes. Therefore, the charges of the bilayer membranes are not shielded by salts. The birefringent solutions of Mg(DS)2 and C14DMAO mixtures consist of vesicles which were determined by transmission electron microscopy (TEM) images and rheological measurements. Magnesium oxide (MgO) nanoplates were obtained via the decomposition of Mg(OH)2 which were synthesized in Mg2+-induced vesicle phase which was used as the microreactor under the existence of ammonia hydroxide. The morphologies and structures of the obtained MgO nanoplates have been characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results indicate that the crystal growth is along the (1 1 1) direction which can be affected by the presence of a vesicle phase having a fixation of Mg2+ ions to the bilayer membranes.  相似文献   

3.
A series of Mg‐Zr mixed oxides with different nominal Mg/ (Mg+Zr) atomic ratios, namely 0, 0.1, 0.2, 0.4, 0.85, and 1, is prepared by alcogel methodology and fundamental insights into the phases obtained and resulting active sites are studied. Characterization is performed by X‐ray diffraction, transmission electron microscopy, X‐ray photoelectron spectroscopy, N2 adsorption–desorption isotherms, and thermal and chemical analysis. Cubic MgxZr1?xO2?x solid solution, which results from the dissolution of Mg2+ cations within the cubic ZrO2 structure, is the main phase detected for the solids with theoretical Mg/ (Mg+Zr) atomic ratio ≤0.4. In contrast, the cubic periclase (c‐MgO) phase derived from hydroxynitrates or hydroxy precursors predominates in the solid with Mg/(Mg+Zr)=0.85. c‐MgO is also incipiently detected in samples with Mg/(Mg+Zr)=0.2 and 0.4, but in these solids the c‐MgO phase mostly arises from the segregation of Mg atoms out of the alcogel‐derived c‐MgxZr1?xO2?x phase during the calcination process, and therefore the species c‐MgO and c‐MgxZr1?xO2?x are in close contact. Regarding the intrinsic activity in furfural–acetone aldol condensation in the aqueous phase, these Mg? O? Zr sites located at the interface between c‐MgxZr1?xO2?x and segregated c‐MgO display a much larger intrinsic activity than the other noninterface sites that are present in these catalysts: Mg? O? Mg sites on c‐MgO and Mg? O? Zr sites on c‐MgxZr1?xO2?x. The very active Mg? O? Zr sites rapidly deactivate in the furfural–acetone condensation due to the leaching of active phases, deposition of heavy hydrocarbonaceous compounds, and hydration of the c‐MgO phase. Nonetheless, these Mg‐Zr materials with very high specific surface areas would be suitable solid catalysts for other relevant reactions catalyzed by strong basic sites in nonaqueous environments.  相似文献   

4.
Hydration of medium reactive magnesium oxide using hydration agents   总被引:1,自引:0,他引:1  
Water, magnesium acetate, magnesium chloride, acetic acid and hydrochloric acid were used as hydrating agents for an industrially obtained MgO sample. The influence of these different hydrating agents on the pH of the hydrating solution, degree of hydration to Mg(OH)2, and product surface area was studied as a function of the temperature of hydration. When compared to the hydration in water, all hydrating agents improved the degree of hydration between 5 and 50% at all temperatures. MgCl2 and a mixture of HCl and Mg(CH3COO)2 seemed to be the most effective hydrating agents below 60°C, while at temperatures above 60°C Mg(CH3COO)2 formed the largest percentage Mg(OH)2. Mg(CH3COO)2 was the hydrating agent that showed the strongest temperature dependence. The mechanism of the hydration reaction seems to be dependent of the availability of Mg2+ ions and the increased formation of Mg(OH)2 as temperature increases.  相似文献   

5.
The compounds of MgO–silica fume (SF) pastes constitute magnesium silicate hydrate (M–S–H) in a new generation of basic castables. However, Mg(OH)2 is a common reaction product with the formation of M–S–H. This study aims to reduce the formation of Mg(OH)2 in MgO–SF pastes. In this study, MgO powders were prepared by calcining magnesite at different temperatures and then mixed with SF and water to prepare MgO–SF pastes. The properties of MgO powders were characterized, and the pH values in the pore solutions of MgO–SF pastes were measured. The MgO–SF pastes cured for 90 days were calcined at 500, 700, 900 and 1200 °C, and the microstructure was characterized afterward. The results showed that both the reactivity of MgO powders and the pH value of the pore solution of MgO–SF pastes were diverse, which essentially depended on the grain sizes and the crystalline degree of MgO. Increasing the calcination temperature of MgO was beneficial to reduce the formation of Mg(OH)2 or even stop it when using MgO calcined at 1450 °C. Enstatite and forsterite formed for all MgO–SF pastes after calcination. However, the microstructure of MgO–SF paste with MgO calcined at 1450 °C was denser than others. MgO–SF pastes were suitable for the new-generation refractory castables. Notably, using MgO calcined at 1450 °C is more appropriate.  相似文献   

6.
New solid compounds of Tb(III), Ho(III), Er(III) and Yb(III) with chrysin   总被引:1,自引:0,他引:1  
The time required for maximum hydration of MgO obtained from the calcination of magnesite was determined. The MgO samples were hydrated for different time intervals in both water and magnesium acetate. A thermogravimetric analysis (TG) method was used to determine the degree of hydration to Mg(OH)2. Increasing the hydration time, the degree of hydration of MgO and surface area of the formed Mg(OH)2 increased. A leveling effect was observed on the percentage Mg(OH)2 obtained from hydration in magnesium acetate, and an optimum amount of 85% was obtained after 500 min. For the hydration in water, the leveling effect was only observed after 800 min giving a maximum of 65% Mg(OH)2.  相似文献   

7.
The complex formation and dehydration processes in the system M(CH3COO)2? CH3OH? H2O have been studied by the methods of the physico-chemical analysis at 25°C; (M = Mg2+, Ca2+ and Ba2+). In the Mg(CH3COO)2? CH3OH? H2O system. methanol was found to behave as a solvent in which complex formation reactions take place, including also methanolation of Mg2+. The fields of equilibrium existence of two new compounds have been found: Mg(CH3COO)2 · 3H2O · CH3OH and Mg(CH3COO)2 · 1,5 CH3OH. In the systems M(CH3COO)2? CH3OH? H2O (M = Ca2+, Ba2+), methanol was found to react as a dehydrating reagent.  相似文献   

8.
The thermal decomposition mechanisms and the intermediate morphology of MgCl2·6H2O and MgCl2·H2O were studied using integrated thermal analysis, X-ray diffraction, scanning electron microscope and chemical analysis. The results showed that there were six steps in the thermal decomposition of MgCl2·6H2O: producing MgCl2·4H2O at 69 °C, MgCl2·2H2O at 129 °C, MgCl2·nH2O (1 ≤ n ≤ 2) and MgOHCl at 167 °C, the conversion of MgCl2·nH2O (1 ≤ n ≤ 2) to Mg(OH)Cl·0.3H2O by simultaneous dehydration and hydrolysis at 203 °C, the dehydration of Mg(OH)Cl·0.3H2O to MgOHCl at 235 °C, and finally the direct conversion of MgOHCl to the cylindrical particles of MgO at 415 °C. To restrain the sample hydrolysis and to obtain MgCl2·H2O, MgCl2·6H2O was first calcined in HCl atmosphere until 203 °C when MgCl2·H2O was obtained; HCl gas was then turned off and the calcination process continued, producing Mg3Cl2(OH)4·2H2O calcined at 203 °C, Mg3(OH)4Cl2 at 220 °C and MgO at 360 °C. The temperature of producing MgO from calcination of MgCl2·H2O was lower (360 °C) than that from MgCl2·6H2O (415 °C) because of its more reactive intermediate products: the irregular shape and tiny needle-like Mg3Cl2(OH)4·2H2O particles and the uneven surface porous Mg3(OH)4Cl2 particles. The MgO particles obtained at 360 °C had a flake structure.  相似文献   

9.
The impact of pH and washing procedure on calcium and magnesium distribution between pulp and filtrate in pulp processing was investigated. Depending on media pH, the elements are present in the form of ions (Ca2+, Mg2+) and hydrated oxides (Ca(OH)2, Mg(OH)2). Distribution was monitored using binary systems of CaCl2 and MgCl2 dissolved in deionized water or Ca2+ and Mg2+ ions present in filtrates from an industrial pulp mill. Complying with the relevant standards in force, Ca and Mg contents are expressed as CaO and MgO. The study was aimed at obtaining mathematic relations between pH and calcium and magnesium, as two important non-process elements, sorption on pulp. Distribution of the elements between pulp and liquid (filtrate or water) was determined with analytical procedures and simulation of pulp washing. It was found that both pH and filtrate composition influenced sorption/desorption of the elements on/from pulp. Filtrate from a pulp mill, mainly content of organic substances in liquid phase, affects their sorption on pulp and desorption to liquid. The higher the pH value the more efficient the sorption of the elements, magnesium being sorbed on pulp in higher amounts than calcium. Prevalence of the sorbed magnesium is preserved even at lower concentrations of both elements. Distribution of the elements between pulp and solution is expressed through mathematic relations which, in turn, can be employed to purposefully modify or optimize the distribution between the solid (pulp) and liquid (filtrate) media. Moreover, rationalized exploitation of mathematical relations enables balancing the elements within a cellulose manufacture, regulating media recycling, and predicting an eventual impact on technological processes.  相似文献   

10.
《Solid State Sciences》2012,14(2):250-257
CO2 adsorption properties on Mg modified silica mesoporous materials were investigated. By using the methods of co-condensation, dispersion and ion-exchange, Mg2+ was introduced into SBA-15 and MCM-41, and transformed into MgO in the calcination process. The basic MgO can provide active sites to enhance the acidic CO2 adsorption capacity. To improve the amount and the dispersion state of the loading MgO, the optimized modification conditions were also investigated. The XRD and TEM characteristic results, as well as the CO2 adsorption performance showed that the CO2 adsorption capacity not only depended on the pore structures of MCM-41 and SBA-15, but also on the improvement of the dispersion state of MgO by modification. Among various Mg modified silica mesoporous materials, the CO2 adsorption capacity increased from 0.42 mmol g−1 of pure silica SBA-15 to 1.35 mmol g−1 of Mg–Al–SBA-15-I1 by the ion-exchange method enhanced with Al3+ synergism. Moreover, it also increased from 0.67 mmol g−1 of pure silica MCM-41 to 1.32 mmol g−1 of Mg–EDA–MCM-41-D10 by the dispersion method enhanced with the incorporation of ethane diamine. The stability test by 10 CO2 adsorption/desorption cycles showed Mg–urea–MCM-41-D10 possessed quite good recyclability.  相似文献   

11.
The Mg/MgO/CO chain reaction for the production of Mg(3P) atoms has been examined experimentally, using a purely thermal source of Mg(1S) atoms. and theoretically in terms of the potential energy surfaces for this reaction. The observed chemiluminescent emission arises from reactions involving the formation of a charge-transfer Mg+N2O? intermediate. Mg(3P) atoms are formed upon reduction by CO of the lowest triplet component of this charge-transfer complex.  相似文献   

12.
The Mg–Ce–O powder are shown to contain periclase-type MgO and/or fluoride-type cerium oxide (CeO2) depending upon the composition (x) defined by Ce/(Ce + Mg) atomic ratio. Lattice contraction of pariclase phase of MgO (average crystallite size ~8.8 nm) at Ce content of ‘x’ = 0.20 in comparison to pure MgO (crystallite size ~9.5 nm) has been realized due to oxygen vacancy formation. The optical band gap values of CeO2 varies (3.0–3.2 eV) due to oxygen vacancy formation in CeO2 phase, crystallite size and/or Ce3+/Ce4+ ratio. Further, the addition of Ce has shown to reduce the physisorption and chemisorption of water significantly as reflected by (1) suppression of related absorption peaks and (2) absence of magnesium hydroxide, Mg(OH)2, bands in Fourier transform infrared spectra.  相似文献   

13.
The process of formation of iron hydrosilicates (Mg2+,Fe3+)2–3Si2O5(OH)4 was studied. It was shown that the stage of coprecipitation of magnesium and iron hydroxides in the presence of silica nanoparticles forms poorly crystallized layered Mg–Fe double hydroxides having Fe3+ ions in the octahedral sites. Hydrothermal treatment of the mixtures of coprecipitated hydroxides and silica nanoparticles gives rise to layered hydrosilicates, where Fe3+ ions occupy both the octahedral (preferentially) and tetrahedral sires. The possibility of the formation and a fairly stable existence of the variable-composition layered hydrosilicate (Mg2+,Fe3+)2–3Si2O5(OH)4 was shown to correlate with the stability range of its precursor brucite-like Mg–Fe layered double hydroxide.  相似文献   

14.
Two different orientational assemblies of MgO nanosheets were obtained by tuning the polarity of solvents during the drop deposition method. Different UVvisible diffuse reflectance spectra were recorded and are related to the orientations of the exposed facets.  相似文献   

15.
This work investigates the thermal decomposition of magnesian kutnahorite, which belongs to the dolomite group.The DTA curve measured in static air using a small amount of sample (5.0 mg) is quite different from those published previously. This difference might be due to the effect of a self-generated CO2 atmosphere.In a CO2 flow of 100 ml min?1, magnesian kutnahorite decomposes in four steps. Mg-kutnahorite → CaCO3 + Mg2MnO4 + Mn3O4 + MgO → CaCO3 + CaMnO3 + MgO → CaCO3 + CaMnO3 + Ca2MnO4 + MgO → CaMnO3 + Ca2MnO4 + MgO + CaO.However, in a mixed gas flow of CO2 at 95 ml min?1 and CO at 5 ml min?1, it decomposes, like dolomite, in two steps. Mg-kutnahorite → CaCO3 + (Mg,Mn)O- → (Ca, Mn)O + (Mg,Mn)O-.It has been found that the equilibrium redistribution of Mn between (Ca, Mn)O- and (Mg, Mn)O- is achieved at the second decomposition step. This is supported by theoretical considerations.Consequently, when the O2 partial pressure in the atmosphere is low enough to keep Mn in a bivalent state, the Mn bearing dolomite group mineral decomposes in a similar manner to dolomite itself.  相似文献   

16.
Summary The excess of Mg positioned in the intermediary phase of Mg-Mn and Mg-ferrites was investigated. The MgO of the intermediary phase retains some of its chemical activity even after ignition together with its capacity to bind and to give off moisture. It was possible to determine the water content by both the Karl Fischer method, and thermogravimetry. The author's investigations conformed with the assumption, that in the intermediary phase Mg is present both in the form of MgO and Mg2O(OH)2. Its reactivity may be caused by its labile crystallographic position.
Zusammenfassung Es wurde der Überschuß an Magnesium in der Zwischenphase von Mg-Mn und Mg-Ferriten untersucht. Das MgO der Zwischenphase behält auch nach dem Glühen teilweise seine chemische Aktivität und seine Fähigkeit, Wasser zu binden und abzugeben. Der Wassergehalt konnte thermogravimetrisch und nach der Karl Fischer-Methode bestimmt werden. Die Untersuchungen bestätigten die Annahme, daß das Mg in der Zwischenphase als MgO und Mg2O(OH)2 vorhanden ist. Seine Aktivität kann durch seine labile Stellung im Kristallgitter erklärt werden.


Part of Mrs. Hochmann-Fischer's dissertation for the doctor's degree, prepared at the Department of Pharmacentical Chemistry (Prof. Dr. Antal Végh), Medical School, Budapest University.  相似文献   

17.
A new magnesium borate Mg2[B2O4(OH)2]·H2O has been synthesized by the method of phase transformation of double salt at hydrothermal condition and characterized by XRD, IR, TG and DSC. The enthalpy of solution of Mg2[B2O4(OH)2]·H2O in 0.9764 mol L–1 HCl was determined. With the incorporation of the enthalpies of solution of H3BO3 in HCl (aq), of MgO in (HCl+H3BO3) (aq), and the standard molar enthalpies of formation of MgO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of –(3185.78±1.91) kJ mol–1 of Mg2[B2O4(OH)2]·H2O was obtained.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

18.
系统研究了铂、镍、不锈钢(SS)、铜、铝五种金属集流体和碳纤维、石墨箔、碳布三种碳纸集流体对“一代” (Mg(AlCl2BuEt)2/THF)、“二代” ((PhMgCl)2-AlCl3/THF)可充镁电池电解液阳极氧化分解电位和镁沉积-溶出性能的影响。金属镍、不锈钢、铜、铝作为可充镁电池正极的集流体时, 充电至一定电压时自身均会发生腐蚀。其中, 镍和不锈钢可用作充电电压在2.1V(vs Mg/Mg2+)以下正极材料的集流体; 铜可用作充电电压在1.8V(vs Mg/Mg2+)以下正极材料的集流体。碳集流体比金属集流体具有更高的稳定性, 其中, 碳布作为集流体, 适用于充电电压在2.25V(vs. Mg)(对“一代”电解液)和2.95V(vs Mg/Mg2+)(对“二代”电解液)以下的正极材料。  相似文献   

19.
The hydrated MgO surface has been simulated by the linear atomic chain (MgOHV″MgHOMg)2+ and the total energy of this system has been evaluated ab initio as a function of the HH (or OH) distance. A symmetrical motion of both hydrogen nuclei with respect to the central Mg2+ vacancy was assumed. Two potential minima are found which correspond to systems that can be formally described as (2Mg2+, 2OH?) (I, lower energy system) and (2Mg2+, 2O?, H2) (II, lying 140.9 kcal above I). These theoretical calculations show that the reaction 2OH? → 2O? + H2 will occur on MgO with a thermal activation energy of about 145.0 kcal, while the chemisorption of hydrogen as hydrexyls on O? sites has a very low activation energy (4.1 kcal).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号