首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Allyl acrylate and allyl methacrylate were polymerized by anionic initiators to soluble linear polymers containing allyl groups in the pendant side chains. The pendant unpolymerized allyl groups of the resulting linear poly(allyl acrylates) were shown to be present by: (1) the disappearance of the acrylyl and methacrylyl double bond absorptions in the infrared spectra in the conversions of monomers to polymers; (2) postbromination of the allyl bonds in the linear polymer; (3) the disappearance of the allyl groups absorptions in the infrared spectra of the brominated linear polymers; and (4) the thermal- and radical-initiated crosslinking of the linear polymers through the allyl groups. Allyl acrylate and allyl methacrylate show great reluctance to copolymerize with styrene under anionic initiation, but copolymerize readily with methyl methacrylate and acrylonitrile. Block copolymers were prepared by reacting allyl methacrylate with preformed polystyrene and poly(methyl methacrylate) anions. The linear polymers and copolymers of allyl acrylate may be classified as “self-reactive” polymers which yield thermosetting polymers. Bromination of the linear polymers offers a convenient method of producing self-extinguishing polymers.  相似文献   

2.
The polymers poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate] (PDMDMA) and four‐armed PDMDMA with well‐defined structures were prepared by the polymerization of (2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate (DMDMA) in the presence of an atom transfer radical polymerization (ATRP) initiator system. The successive hydrolyses of the polymers obtained produced the corresponding water‐soluble polymers poly(2,3‐dihydroxypropyl acrylate) (PDHPA) and four‐armed PDHPA. The controllable features for the ATRP of DMDMA were studied with kinetic measurements, gel permeation chromatography (GPC), and NMR data. With the macroinitiators PDMDMA–Br and four‐armed PDMDMA–Br in combination with CuBr and 2,2′‐bipyridine, the block polymerizations of methyl acrylate (MA) with PDMDMA were carried out to afford the AB diblock copolymer PDMDMA‐b‐MA and the four‐armed block copolymer S{poly[(2,2‐dimethyl‐1,3‐dioxolane‐4yl) methyl acrylate]‐block‐poly(methyl acrylate)}4, respectively. The block copolymers were hydrolyzed in an acidic aqueous solution, and the amphiphilic diblock and four‐armed block copolymers poly(2,3‐dihydroxypropyl acrylate)‐block‐poly(methyl acrylate) were prepared successfully. The structures of these block copolymers were verified with NMR and GPC measurements. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3062–3072, 2001  相似文献   

3.
A samarium enolate, supported on a crosslinked polystyrene resin, successfully initiated the living anionic polymerization of allyl methacrylate (AMA) to afford the corresponding poly(AMA) with well‐controlled molecular weights. Diblock, triblock, and tetrablock copolymerizations with methyl methacrylate (MMA) were also successfully performed. The formed polymers, supported on the resin by a benzyl ester linker, were quantitatively isolated from the resin by selective cleavage of the linker with trifluoroacetic acid (TFA). Allyl ester in the side chain was not affected by this isolation step. The allyl group of the immobilized poly(AMA‐b‐MMA) on the resin was transformed into a 2,3‐dihydroxypropyl group by osmium oxidation. The resulting copolymer was isolated by TFA treatment of the resin, and it showed amphiphilicity. In both the polymerization and side‐chain modification, the formed polymers were easily washed from excess reagents only by filtration, and this demonstrated the feasibility of the automated synthesis of functional polymers based on this solid‐supported polymerization technique. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 853–860, 2003  相似文献   

4.
Heteroarm H‐shaped terpolymers (PS)(PtBA)–PEO–(PtBA)(PS) and (PS)(PtBA)–PPO–(PtBA)(PS) [where PS is polystyrene, PtBA is poly(tert‐butyl acrylate), PEO is poly(ethylene oxide), and PPO is poly(propylene oxide)], containing PEO or PPO as a backbone and PS and PtBA as side arms, were prepared via the combination of the Diels–Alder reaction and atom transfer radical and nitroxide‐mediated radical polymerization routes. Commercially available PEO or PPO containing bismaleimide end groups was reacted with a compound having an anthracene functionality, succinic acid anthracen‐9‐yl methyl ester 3‐(2‐bromo‐2‐methylpropionyloxy)‐2‐methyl‐2‐[2‐phenyl‐2‐(2,2,6,6‐tetramethylpiperidin‐1‐yloxy)ethoxycarbonyl]propyl ester, with a Diels–Alder reaction strategy. The obtained macroinitiator with tertiary bromide and 2,2,6,6‐tetramethylpiperidin‐1‐oxy functional end groups was used subsequently in the atom transfer radical polymerization of tert‐butyl acrylate and in the nitroxide‐mediated free‐radical polymerization of styrene to produce heteroarm H‐shaped terpolymers with moderately low molecular weight distributions (<1.31). The polymers were characterized with 1H NMR, ultraviolet, gel permeation chromatography, and differential scanning calorimetry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3947–3957, 2006  相似文献   

5.
Low molecular weight linear poly(methyl acrylate), star and hyperbranched polymers were synthesized using atom transfer radical polymerization (ATRP) and end‐functionalized using radical addition reactions. By adding allyltri‐n‐butylstannane at the end of the polymerization of poly(methyl acrylate), the polymer was terminated by allyl groups. When at high conversions of the acrylate monomer, allyl alcohol or 1,2‐epoxy‐5‐hexene, monomers which are not polymerizable by ATRP, were added, alcohol and epoxy functionalities respectively were incorporated at the polymer chain end. Functionalization by radical addition reactions was demonstrated to be applicable to multi‐functional polymers such as hyperbranched and star polymers.  相似文献   

6.
Multifunctional initiators for atom transfer radical polymerization (ATRP) are prepared by converting ditrimethylolpropane with four hydroxyl groups, dipentaerythritol with six hydroxyl groups, and poly(3‐ethyl‐3‐hydroxymethyl‐oxetane) with ~11 hydroxyl groups to the corresponding 2‐bromoisobutyrates or 2‐bromopropionates as obtained by reaction with acid bromides. Star polystyrene (PS) is produced by using these macroinitiators and neat styrene in a controlled manner by ATRP at 110 °C, employing the catalytic system CuBr and bipyridine. Mn up to 51,000 associated with narrow molecular weight distributions (PDI < 1.1) are obtained with conversions up to 32%. Hydrolysis of the star‐PS leads to linear chains having the expected Mn values. The star‐PS polymers based on dipentaerythritol degrade thermally in nitrogen in a two‐step process in which the first low‐temperature step involves scission of the ester linkages and the second step corresponds to the normal PS degradation. Star poly(methyl acrylates) with various cores are likewise prepared in a controlled manner by ATRP of methyl acrylate in bulk and in solution at 60–80 °C with the 1,1,4,7,7‐pentamethyldiethylene triamine ligand. Under these conditions, higher conversions were possible still maintaining low PDI signaling controlled star growth. Multiarm stars of poly(n‐butyl acrylate) and poly(n‐hexyl acrylate) with controlled characteristics have also been prepared. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3748–3759, 2005  相似文献   

7.
Head-to-head poly(methyl acrylate) was prepared by esterification of the known alternating copolymer of ethylene and maleic anhydride. Some of the chemical,physical, and mechanical properties and the thermal degradation behavior of head-to-head poly(methyl acrylate) were studied and compared with those of head-to-tail poly(methyl acrylate). The Tg of the head-to-head polymer was higher than that of the head-to-tail polymer, but the solubilities of both types of polymers of comparable molecular weight were similar. Head-to-head poly(methyl acrylate) degraded thermally at approximately the same temperature and with a rate similar to head-to-tail poly(methyl acrylate). Unlike poly(methyl cinnamates) which cleanly degraded to monomers, poly(methyl acrylates), head-to-head and head-to-tail, degrade to very small molecules, such as CO2, methanol, but also larger polymer fragments and char. Trace amounts of monomers (methyl acrylate) were also observed.  相似文献   

8.
A number of diblock copolymers were successfully prepared by Diels–Alder reaction, between maleimide‐ and anthracene‐end functionalized poly (methyl methacrylate) (PMMA), polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly(ethylene glycol) (PEG) in toluene, at 110 °C. For this purpose, 2‐bromo‐2‐methyl‐propionic acid 2‐(3,5‐dioxo‐10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐en‐4‐yl)‐ethyl ester, 2 , 9‐anthyrylmethyl 2‐bromo‐2‐methyl propanoate, 3 , and 2‐bromo‐propionic acid 2‐(3,5‐dioxo‐10‐oxa‐4‐azatricyclo[5.2.1.02,6]dec‐8‐en‐4‐yl)‐ethyl ester, 4 , were used as initiators in atom transfer radical polymerization, in the presence of Cu(I) salt and pentamethyldiethylenetriamine (PMDETA), at various temperatures. On the other hand, PEG with maleimide‐ or anthracene‐end functionality was achieved by esterification between monohydroxy PEG and succinic acid monoathracen‐9‐ylmethyl ester, 1 , or 4‐maleimido‐benzoyl chloride. Thus‐obtained PMMA‐b‐PS, PEG‐b‐PS, PtBA‐b‐PS, and PMMA‐b‐PEG block copolymers were characterized by 1H NMR, UV, and GPC. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1667–1675, 2006  相似文献   

9.
Polymer with pendant cinnamic ester and chloromethyl groups was synthesized by the addition reaction of poly(glycidyl methacrylate–co–methyl methacrylate) (PGMA) with cinnamoyl chloride. Also, polymers with pendant benzoic esters and chloromethyl groups were synthesized by reaction of PGMA with the corresponding benzoyl chlorides. Furthermore, polymers with cinnamic or benzoic esters and alkylazide groups were prepared by the substitution reaction of the obtained polymers with sodium azide.  相似文献   

10.
An ABC‐type miktoarm star polymer was prepared with a core‐out method via a combination of ring‐opening polymerization (ROP), stable free‐radical polymerization (SFRP), and atom transfer radical polymerization (ATRP). First, ROP of ϵ‐caprolactone was carried out with a miktofunctional initiator, 2‐(2‐bromo‐2‐methyl‐propionyloxymethyl)‐3‐hydroxy‐2‐methyl‐propionic acid 2‐phenyl‐2‐(2,2,6,6‐tetramethyl‐piperidin‐1‐yl oxy)‐ethyl ester, at 110 °C. Second, previously obtained poly(ϵ‐caprolactone) (PCL) was used as a macroinitiator for SFRP of styrene at 125 °C. As a third step, this PCL–polystyrene (PSt) precursor with a bromine functionality in the core was used as a macroinitiator for ATRP of tert‐butyl acrylate in the presence of Cu(I)Br and pentamethyldiethylenetriamine at 100 °C. This produced an ABC‐type miktoarm star polymer [PCL–PSt–poly(tert‐butyl acrylate)] with a controlled molecular weight and a moderate polydispersity (weight‐average molecular weight/number‐average molecular weight < 1.37). The obtained polymers were characterized with gel permeation chromatography and 1H NMR. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4228–4236, 2004  相似文献   

11.
Methylthioethyl acrylate, prepared by ester exchange from methylthioethanol and methyl acrylate, behaves in copolymerization like a typical acrylate ester such as butyl acrylate. This monomer can be alkylated to yield corresponding sulfonium monomers. With dimethyl sulfate, (2-acryloxyethyl) dimenthylsulfonium methyl sulfate is obtained. This latter monomer has a predictable lower relative copolymerization rate with alkyl acrylates than methylthioethyl acrylate. Water-soluble sulfonium polymers are polymeric cations and can act effectively as flocculants.  相似文献   

12.
One new and one established functional cyclooctene were prepared and (co)polymerized using ring-opening metathesis polymerization. The resulting polymers were hydrogenated to yield the corresponding functional polyolefins that were structurally equivalent to copolymers of ethylene and either methyl methacrylate, t-butyl acrylate, or acrylic acid after deprotection. The copolymers that incorporate methyl methacrylate into the backbone were used as compatibilizers for poly(methyl methacrylate)/polyethylene blends. The copolymers that incorporate t-butyl acrylate into the backbone yielded elastomers that could be thermally crosslinked. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3117–3126  相似文献   

13.
Ester-substituted oxyethylene polymers and copolymers of methyl 10,11-epoxyundecanoate were prepared with an aluminumalkyl–water coordination initiator system modified with acetylacetone. Poly(ethylene oxide) ionomers, polyelectrolytes, and polycarboxylic acids were obtained by alkaline hydrolysis of the pendant carbomethoxy groups and by neutralizations with acetic acid. The high molecular weight substituted poly(ethylene oxide)s were characterized by spectral, thermal, and dilute solution measurements. The infrared spectra of carboxylate substituted poly(ethylene oxide)s, both homo- and copolymers, show the typical shifts in the carboxyl absorption when going from the ester to the carboxylate group to the free acid. Polymer transitions temperatures, as measured by DSC, changed accordingly. Wide-angle x-ray diffraction measurements strongly suggest the existence of ionic domains in the oxyethylene polymer matrix. Dilute solution properties of the ionomers show typical polyelectrolyte behavior, including a substantial change in viscosity when ionic solute is added.  相似文献   

14.
The synthesis and polymerization of a series of perhaloalkyl allyl and vinyl ethers derived from perhaloketones is described. Data on the critical surface tension of wetting (γc) for high molecular weight polymers of heptafluoroisopropyl vinyl ether and low molecular weight poly(heptafluoroisopropyl allyl ether) is also presented. Preparation of the allyl ethers is a one-step, high-yield displacement reaction between the potassium fluoride–perhaloacetone adduct and an allyl halide, such as allyl bromide. The vinyl ethersare prepared by a two-step process which involves displacement of halide from a 1,2-dihaloethane with a KF–perhaloacetone adduct and dehydrohalogenation of the 1-halo-2-perhaloalkoxyethane to a vinyl ether. Low molecular weight polymers were obtained with heptafluoroisopropyl allyl ether by using a high concentration of a free-radical initiator. The low molecular weight poly(heptafluoroisopropyl allyl ether) had a γc of 21 dyne/cm. No polymer was obtained with tributylborane–oxygen or with VCl3–AIR3, with gamma radiation, or by exposure to ultraviolet light. High molecular weight polymers were obtained from heptafluoroisopropyl vinyl either by using either lauryl peroxide or ultraviolet light but not by exposure to BF3–etherate. The γc for poly(heptafluoroisopropyl vinyl ether) ranged from 14.2 to 14.6 dyne/cm., and the significance of this value is discussed in relation to the γc for poly(heptafluoroisopropyl acrylate).  相似文献   

15.
Insertion poly(methyl acrylate) and poly(methyl methacrylate) were prepared from monomers adsorbed in monolayers on the surface of montmorillonite clay, both in the presence and in the absence of bifunctional crosslinkers (ethylene glycol dimethacrylate and tetramethylene glycol dimethacrylate). The insertion poly(methyl acrylate) and the crosslinked insertion poly(methyl methacrylate) and dilute-solution properties quite different from conventional polymers of these monomers, the differences including high light-scattering molecular weights combined with low viscosities, low values of the second virial coefficient, unusually large variations of the Huggins' constant k′ with the time-temperature history of the solutions, and low sedimentation velocities. These properties suggest that the insertion polymers have compact structures and are consistent with the postulate of sheetlike macromolecules. The dilute-solution properties of insertion poly(methyl methacrylate) made without crosslinker, unlike those of similarly prepared poly(methyl acrylate), were similar to those of conventional poly(methyl methacrylate). This difference in behavior is attributed to the different tendencies of the two monomers to undergo branching or crosslinking during radical polymerization.  相似文献   

16.
Nuclear magnetic resonance (NMR) spectroscopy was used to determine the stereoregularity of radically polymerized poly(ethyl acrylates), poly(trimethylsilyl acrylates), and poly(isopropyl acrylate-α,β-d2). The ethyl acrylate polymers consisted of a random configuration having about 50% of isotactic diads, and their stereoregularities were independent of the polymerization temperature (40 to ?78°C). Poly(trimethylsilyl acrylates) and poly(isopropyl acrylate-α,β-d2) prepared at low temperatures had a syndiotactic configuration. Syndiotactic poly(methyl acrylate) was derived from syndiotactic poly(trimethylsilyl acrylate). For poly(methyl acrylate), an approximate estimation of the stereoregularity by infrared spectroscopy was proposed.  相似文献   

17.
Sequential poly(methyl acrylate)/poly(hydroxyethyl acrylate) interpenetrating polymer networks with different poly(hydroxyethyl acrylate) contents were prepared by free radical polymerization of hydroxyethyl acrylate inside the previously polymerized poly(methyl acrylate) network. Differential scanning calorimetry on dry samples shows that the interpenetrating polymer networks exhibit phase separation, and no differences are found between the glass transition temperatures of the two phases present in the interpenetrating polymer network and those of the pure components. Thermally stimulated depolarization current experiments were used to study the influence of water sorption on the mobility of the different molecular groups in the poly(hydroxyethyl acrylate) phase of the interpenetrating polymer network. Isothermal water sorption of the interpenetrating polymer networks and pure poly(methyl acrylate) and poly(hydroxyethyl acrylate) networks is analyzed with different theories to compare the behavior of the poly(hydroxyethyl acrylate) phase in the interpenetrating polymer networks with that of the pure poly(hydroxyethyl acrylate) network. Diffusion coefficients of water in the interpenetrating polymer networks are obtained by means of dynamic sorption experiments. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1587–1599, 1999  相似文献   

18.
A novel synthesis of linear acrylic acid containing polymers, poly(styrene-co-acrylic acid) and poly(acrylic acid), was accomplished through hydrolysis of the respective parent polymers, i.e. poly(styrene-co-methyl acrylate) and poly(methyl acrylate), with trimethylsilyl iodide under mild conditions. Combination of 1H NMR, 13C NMR, FTIR, DSC and chemical titration confirms that the conversion from methoxycarbonyl to carboxyl is almost complete. This method is further successfully applied to synthesize poly-(ethyl methacrylate-co-acrylic acid) through selective hydrolysis of the methyl acrylate units in poly(ethyl methacrylate-co-methyl acrylate).  相似文献   

19.
Stimuli-sensitive polymers were synthesized by copolymerizing varying ratios of N-isopropyl acrylamide(NIPAAm) and acrylic acid(AAc). The influence of polyelectrolytes on the lower critical solution temperatures(LCSTs) of these temperature/pH sensitive polymers was investigated in the pH range of 2-12. Polyelectrolyte complexes were prepared by mixing poly(NIPAAm-co-AAc) as anionic polyelectrolyte with poly(allyl amine)(PAA) or poly(L-lysine)(PLL) as cationic polyelectrolytes, respectively. Back titration was performed to determine the pKa values of PAAc in poly(NIPAAm-co-AAc) and to study the effect of comonomer ionization on the cloud point temperature. The effect of polyelectrolyte complex formation on the conformation of PLL was studied as a function of temperature by means of circular dichroism(CD). The swelling ratio of poly(NIPAAm-co-AAc) hydrogels as a function of pH at various temperature was obtained by measuring the weight of the hydrogels in buffer solutions. The LCSTs of the poly(NIPAAm-co-AAc) were strongly affected by pH, polyelectrolyte solutes, AAc content, and charge density. The influence of more hydrophobic PLL as a polyelectrolyte on the cloud point of PNIPAAm/water in the copolymer was stronger than that of poly(allyl amine)(PAA). Indomethacin was loaded into these hydrogels, and controlled release of this molecule from the hydrogel was determined under various temperature and pH conditions using UV/Vis spectrophotometry.  相似文献   

20.
The end groups of polymers prepared by atom transfer radical polymerization (ATRP), are well-defined and determined by the initiator used, at least one of them is a halogen end group. The halogen end groups can be transformed to other functionalities such as phosphonium salts as demonstrated in this paper. Kinetic studies with the compounds 1-phenylethyl bromide and methyl 2-bromopropionate, models for the polystyrene and polyacrylate chain ends respectively, indicated that bromine end groups were readily transformed to phosphonium end groups upon the addition of phosphines. Stability tests with the obtained phosphonium salts showed that 1-phenylethyl trialkylphosphonium bromide was stable, even at higher temperatures and in the presence of free phosphines. The stability of the propionate analogue was limited due to the presence of the ester group in the molecule. Polystyrene and poly(methyl acrylate) phosphonium salts were synthesized and the presence of the end groups was demonstrated by 1H NMR and ESI-MS or MALDI-TOFMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号