首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A series of composites containing 2.5–21.0% NiO on a surface of macroporous silica is synthesized. The specific surface area of the composites measured by the thermal desorption of nitrogen decreases with an increase in the NiO content from 24 for the original silica carrier to 16 m2/g the for composite containing 21.0% NiO. The basic dye, methylene blue (MB), is only adsorbed on SiO2 in water solutions, while acid blue anthraquinone (ABA) is only adsorbed on the NiO. The effective specific surface area Seff and effective diameters D eff of NiO nanoparticles are calculated from the adsorption isotherms of ABA on NiO composites and on NiO synthesized without a carrier. S eff of NiO nanoparticles decreases from 76 to 42 m2/g and D eff increases from 8 to 14 nm with rising NiO content in the composites. The NiO nanoparticles synthesized without a carrier are characterized by the lowest S eff (30 m2/g) and the largest D eff (20 nm).  相似文献   

2.
Abstract

Tunisian industrial phosphoric acid H3PO4 was supported on silica gel SiO2 (SIPA) to catalyze the hydrolysis reaction of aqueous alkaline sodium borohydride (NaBH4). The SiO2 was produced from purified quartz sand using alkali fusion-acidification chemical process. The BET surface area results indicate that the prepared silica gel could reach a specific surface area up to 585 m2/g. The addition of PO3H2 functional groups resulted in an increase of surface acidity of SiO2 catalyst as shown by FT-IR and DTA-DTG spectra. The total acidity of SIPA catalyst was determined by titration to be 2.8?mmol H+/g. SEM/EDS maps reveal the distribution of heavy metals on the silica surface. The effect of supported PO3H2 functional groups and heavy metals on the NaBH4 hydrolysis reaction was studied for different ratios of SIPA catalyst to NaBH4. The sample 12SIPA/NaBH4 leads to a very high hydrogen generation rate (up to 90%). The activation energy of hydrogen generation by NaBH4 hydrolysis was 25.7?kJ mol?1.  相似文献   

3.
The porous nature of chromatographic alumina gel has been investigated by adsorption/condensation processes and electron microscopy. Having 63% porosity, the gel is very porous. Total pore volume as determined by the fluid-displacement method is 0.497 cm3 g–1. Its specific surface area, as determined by water vapor adsorption, is 225 m2 g–1. Micropore volume, as determined by utilizing Gurwitsch's rule, turns out to be 0.262 cm3 g–1. The greater portion of the surface area and pore volume occurs in small and transitional pores, with average pore radii (hydraulic) less than 2.1 nm.Organic vapors, such as methyl ethyl ketone, acetone, methyl acetate, and methyl alcohol, were adsorbed on the gel between 0 and 36°C under vacuum, and the data were recorded on a Cahn-1000 electrobalance device. Isosteric heats of adsorption were calculated by applying the Clausius Clapeyron equation to the adsorption isosters at different surface coverages. Two types of adsorption processes, one with low activation energy and other with high activation energy can be distinguished. The increase in values ofq st indicates that increasing temperature changes physical adsorption into chemisorption.  相似文献   

4.
Influence of physically adsorbed basic red 1 (BR1) dye on the physicochemical properties of natural zeolite (clinoptilolite) and clay (bentonite) was compared using adsorption, FTIR, and TG/DTA methods. A larger adsorption of the dye was observed for bentonite (0.143 mmol/g) than for clinoptilolite (0.0614 mmol/g) per gram of an adsorbent. However, the adsorption values are the same per surface unit (1.8 μmol/m2). The result (per gram) is due to location of dye molecules in interlayer and interparticle space of bentonite with much larger specific surface area than that of clinoptilolite. The dye adsorption leads to a decrease in the specific surface area and the pore volume of both minerals. The adsorption changes also a character of active sites and thermal stability. A TG study shows that the dye adsorption on bentonite changes adsorbed water amounts, weight loss, and decomposition temperature. In the case of zeolite, the dye adsorption insignificantly influences the thermal stability. The dehydration energy distributions calculated from the Q-TG and Q-DTG data demonstrate a complex mechanism of water thermodesorption and the influence of adsorbed dye on this process.  相似文献   

5.
The TiO2/beta‐SiC nanocomposites containing 0–25 wt. % of beta‐SiC were synthesized by the sol‐gel method and tested in the photodegradation of methylene blue and methyl orange water solutions. With the increase in SiC content, only a slight decrease in energy band gap was observed (3.19–3.12 eV), together with significant increase in the surface area of the catalysts (42.7–80.4 m2 g?1). In the synthesized material, the anatase phase of TiO2 was present in the form of small agglomerates resulting from the mechanical mixing process. In the process conditions (catalyst concentration 0.5 g L?1, initial dye concentration 100 ppm, light source 100 W UV‐Vis lamp), we have observed no signs of catalyst deactivation. The significantly higher photodegradation activity of methylene blue than methyl orange can be attributed to the preferable pH of the solution compared to pHPZC and the cationic character of the first dye. In case of methyl orange, pH process conditions substantially limit the contact of the catalyst with the dye, as negatively charged surface of the catalysts repels the dissociated anionic dye molecules.  相似文献   

6.
Poly-β-pinene (pBp) was obtained on silica surface by γ radiation-induced polymerization of β(−)pinene in presence of silica gel with a specific surface area of 300 m2/g. Different radiation doses were employed in the range 50–332 kGy. The pBp–silica hybrid samples obtained have been characterized by FT-IR spectroscopy and the amount of pBp on silica surface has been determined both by gravimetric and TGA measurements. The fraction of pBp chemically grafted on silica surface has been determined by the extraction of the pBp–silica hybrid with boiling toluene and was found to be 10–20% of the total pBp formed on silica surface. The optical activity of pBp extracted from the hybrid was studied by polarimetric measurements and found slightly lower than the typical specific optical rotation of pBp polymerized in bulk with radiation. The thermal stability of the pBp–silica hybrid materials was studied by thermogravimetric and differential thermal analysis. The results show lower thermal stability for the pBp–silica hybrid in comparison to pure pBp. Evidently, silica catalyzes the thermal decomposition of pBp at lower temperatures. Use of the pBp–silica hybrid as stationary phase for liquid chromatography for chiral separations has been proposed.  相似文献   

7.
The present work aimed to achieve valorization of Albian sands for the preparation of sodium silicates that are commonly used as a precursor to prepare silica gel. A siliceous sand sample was mixed with sodium carbonate and heated at a high temperature (1060 °C) to prepare sodium silicates. The sodium silicates were dissolved in distilled water to obtain high quality sodium silicate solution. Hydrochloric acid was then slowly added to the hydrated sodium silicates to obtain silica gel. The collected raw siliceous sands, as well as the prepared silica gels, were characterized by different techniques, such as X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermal analysis (DSC). XRF confirmed that the detrital sand deposits of southern Tunisia contain high amounts of silica, with content ranging from 88.8% to 97.5%. The internal porosity varied between 17% and 22%, and the specific surface area was less than 5 m2/g. After the treatment described above, it was observed that the porosity of the obtained silica gel reached 57% and the specific surface area exceeded 340 m2/g. Nitrogen adsorption isotherms showed that the prepared silica gels are microporous and mesoporous materials with high adsorption capacities. These results suggest that the obtained silica gels are promising materials for numerous environmental applications.  相似文献   

8.
The organic–inorganic composite materials based on mesoporous silica were synthesized using sol–gel method. The surface area of silicas was modified by bovine serum albumin (BSA) and guanidine polymers: polyacrylate guanidine (PAG) and polymethacrylate guanidine. The mesoporous silicas were characterized by nitrogen adsorption–desorption analysis, Fourier transform infrared spectroscopy, transmission electron microscopy. The obtained materials were used as adsorbents for selective bilirubin removal. It was shown that the structural properties and surface area of modified materials depend on the nature of polymers. Incorporation of polymers in silica gel matrix during sol–gel process leads to the formation of mesoporous structure with high pore diameter and a BET surface area equals to 346 m2/g for SiO2/BSA and 160 m2/g for SiO2/PAG. Analysis of adsorption isotherms showed that modification of silica by BSA and guanidine polymers increases its adsorption ability to bilirubin molecules. According to Langmuir model, the maximum bilirubin adsorption capacity was 1.18 mg/g.  相似文献   

9.
Aluminum was doped into amorphous silica gel to modify its surface structure. The obtained SiO2-Al2O3 support was used to prepare the CuCl/SiO2-Al2O3 catalyst by solid-state ion exchange, and the catalyst activity for liquid-phase oxidative carbonylation of methanol to dimethyl carbonate was investigated. The results showed that the prepared SiO2-Al2O3 support kept the amorphous structure of the silica gel. The BET specific surface area of the silica gel was decreased to 200 m2/g, and the surface acid sites (including Brønsted acid sites) were increased. In the CuCl/SiO2-Al2O3 catalyst, CuCl was not only dispersed on surface but also was ion exchanged with surface Brønsted acid sites of the SiO2-Al2O3 support to form Cu+ species, which resulted in a decrease in BET specific surface area to 148 m2/g. These two kinds of Cu+ species on the catalyst surface were both active centers for the oxidative carbonylation of methanol to dimethyl carbonate. When the catalyst was prepared with Si/Al molar ratio of 5 and was calcined at 500 °C, the selectivity and space-time yield of dimethyl carbonate reached 74% and 1.27 g/(g·h), respectively.  相似文献   

10.

In this work, the effect of temperature on the texture of silica gel waste is presented and water vapour adsorption in a different humidity is highlighted. It was found that silica gel waste is a mesoporous material with the parallel plates pores. Its specific surface area is equal to 4.61 m2 g?1, and the calculated total pore volume is equal to 9.01 × 10?3 cm3 g?1. The texture of silica gel waste changed during calcination in a 188–550 °C temperature interval: SBET and ΣVP increased to 11.32 m2 g?1 and 30.06 × 10?3 cm3 g?1, respectively. It was determined that the water vapour pressure influenced the mineralogical composition and the quantity of adsorbed water in the samples. The obtained results were confirmed by the differential scanning microcalorimetry, X-ray diffraction, BET and water vapour adsorption analysis data.

  相似文献   

11.
The effect of preparation pH of silica hydrogel on the effective diffusion coefficient of protons in silica hydrogel (D e , m2/s), on surface area of silica gel (S, m2/s) and on particle size of silica gel (D p , mm) was studied. Silica hydrosols were obtained by adding water glass to sulfuric acid. The effective diffusion coefficient of proton in silica hydrogel was determined by the method of diffusion from silica hydrogel plane sheet to a stirred solution of a limited volume. A numerical solution was obtained for the diffusion equation using the Regula Falsi method. Regression analyses of experimental data were conducted.Diffusion of protons in silica hydrogel is a complicated process due to a decelerating effect of the porous structure of silica hydrogel and to the accelerating effects of slow ions such as Na+ and surface diffusion. The effective diffusion coefficient increased with surface area of silica gel, indicating the diffusion of protons on the surface of the silica particles.  相似文献   

12.
A variety of nanosilicas have been widely used to fabricate rough surfaces with superhydrophobic and superhydrophilic properties. In this context, we prepared mixed silica and mixed nanosilica that were generated by the growth and self‐assembly of synthesized monodisperse silica nanospheres (11–30 nm, 363 m2 g?1) on the surface of Sylopol‐948 and Dispercoll S3030 by using a base‐catalyzed sol–gel route. Using this process, the interactions and hierarchical structure between the nano‐ and microsized synthesized silica particles were studied by changing the amount of tetraethoxysilane. The resulting materials were characterized by BET analysis, small‐angle X‐ray scattering (SAXS), dynamic light scattering, FTIR spectroscopy, and SEM. The mixed silica presented a higher specific surface area (326 m2 g?1), a six‐fold higher percentage of (SiO)6 (44–68 %), and a higher amount of silanol groups (14.0–30.7 %) than Sylopol‐948 (271 m2 g?1, 42.6 %, and 12.5 %, respectively). The morphological and hierarchical structural differences in the silica nanoparticles synthesized on the surface of commercial silica (micrometric or nanometric) were identified by SAXS. Mixed micrometric silica exhibited a higher degree of structural organization between particles than mixed nanosilica.  相似文献   

13.
Wood-fiber phenol-formaldehyde-resin (PFR) modified surfaces, obtained from the adsorption of a PFR/water solution, are investigated as a function of the nature and the amount of PFR adsorbed. Surface are measurements are performed by using krypton adsorption at 77 K. Chemical modification is monitored by the electron spectroscopy for chemical analysis (ESCA) technique and the surface energy by the inverse phase gas chromatography (IPGC) method at infinite dilution. The London dispersive componentγ S L of the surface energy shows a relationship to the concentration of carbon and oxgen at the fiber surface.γ S L increases from 27.5 mN·m−1 for the untreated fiber to 42.5 mN·m−1 for the fibers treated with 20% high molecular-weight-grade phenol-formaldehyde. The surface atomic ratio O/C determined using the ESCA technique exhibits a decrease from 44% for untreated to 31% for treated samples. Surface area also decreases from 2.09 m2/g to 1.50 m2/g. The PFR adsorbed by wood fibers is observed as the dispersive component of surface energy starts to increase, as the surface oxygen concentration decreases, and on the surface area of the wood fiber.  相似文献   

14.
A series of silica xerogels was synthesized by using TEOS as the silica precursor and a non ionic surfactant Triton X100 (TX100) and a cationic surfactant Hexadecyltrimethylammonium Bromide (CTAB) as templates. The xerogels were synthesized through 2‐way catalysis using ultrasonic radiations for homogeneous mixing of the precursors and template. The surfactant template was later removed through calcination at 550 °C. It was found out that gels having CTAB as the template had higher surface area (612.08 m2/g) than the gels templated by TX100 (539.6 m2/g). High surface area xerogels were used in adsorption experiments for aqueous solutions of Rhodamine 6G (R6G). UV visible spectroscopy was used to find out the concentrations of dye solutions. The adsorption data of both the types of xerogels was found to follow Freundlich's adsorption model pointing towards the possibility of adsorption of the dye molecules on the heterogeneous surface of the adsorbent.  相似文献   

15.
The adsorption of activated carbon prepared from Scenedesmus obliquus (algae) was evaluated through adsorption of Astrazon red. The adsorption efficiency of activated carbon was determined based on the specific surface area and pore size distribution. These results were compared with the results obtained with untreated algae. Approximately a 3-fold increase in the percentage of dye removal was observed for activated carbon compared to the untreated material. The primary reason for this observation may be the increase in specific surface area and total pore volume by chemical activation from 0.0136 to 423.7001?m2?g?1 and from 0.0012 to 0.1643?cm3?g?1, respectively. A pseudo-second-order model was fit with the kinetic data and the results indicate chemical adsorption. The maximum adsorption capacity of activated carbon was 181.82?mg?g?1 at 25°C according to Langmuir isotherm model.  相似文献   

16.
In this study, we investigated the surface properties of granulated boehmite with vinyl acetate (G-BE20) and measured the amount of phosphate it adsorbed and the effect of contact time and solution pH on the adsorption process. The specific surface area (144.9?m2/g) and the number of surface hydroxyl groups (0.88?mmol/g) of G-BE20 were smaller than those of virgin boehmite (BE), which gave a specific surface area and number of surface hydroxyl groups of 297.0?m2/g and 1.08?mmol/g, respectively. The amount of phosphate adsorbed increased with the temperature. The isotherm model of Langmuir was used to fit experimental adsorption equilibrium data for phosphate adsorption onto G-BE20. The calculated thermodynamic parameters show the spontaneous and endothermic nature of the adsorption process. The equilibrium adsorption onto G-BE20 was reached within 16?h and the amount of phosphate adsorbed was 8.4?mg/g. The kinetic mechanism of phosphate uptake was evaluated with two different models: the Largergren pseudo first- and pseudo second-order models. The data obtained showed a better fit to the pseudo second-order model (0.991) than to the pseudo first-order model (0.967), as indicated by the r values. The rate constants for the adsorption of phosphate onto G-BE20 were calculated as 0.481?1/h and 0.029?g/mg?h. The adsorption of phosphate onto G-BE20 was the maximum in the pH range 3.0-4.0.  相似文献   

17.
We report a method to synthesize low-density transparent mesoporous silica aerogel beads by ambient pressure drying (APD). The beads were prepared by acid–base sol–gel polymerization of sodium silicate in aqueous ammonia solution via the ball dropping method (BDM). To minimize shrinkage during drying, wet silica beads were initially prepared; their surfaces were then modified using trimethylchlorosilane (TMCS) via simultaneous solvent exchange and surface modification. The effects of the volume percentage (%V) of TMCS on the physical and textural properties of the beads were investigated. The specific surface area and cumulative pore volume of the silica aerogel beads increased with an increase in the %V of TMCS. Silica aerogel beads with low packing bed density (0.081 g/cm3), high surface area (917 m2/g), and large cumulative pore volume (2.8 cm3/g) was obtained when 10%V TMCS was used. Properties of the final product were examined by FE-SEM, TEM, BET, and TG–DT analyses. Surface chemical modifications were confirmed by FTIR spectroscopy. The hydrophobic silica aerogel beads were thermally stable up to 411 °C. We discuss our results and compare our findings for modified versus unmodified silica beads.  相似文献   

18.
High surface area alkyl-substituted silica aerogels and xerogels were successfully prepared by sol-gel processing and supercritical drying. The gels were further heat treated in inert atmosphere to temperatures as high as 1000°C. Surface areas and pore structure of the gels and gels pyrolyzed at high temperatures were determined by multipoint BET surface area measurement. The aerogels and xerogels exhibited surface areas of about 1100 m2/g. No significant effect of pH was found on the surface areas of gels in the two step sol-gel process, but gels of low pH showed smaller pore diameter and higher density. Xerogels showed smaller surface area, pore size, and pore volume compared to aerogels. Upon pyrolyzing in inert atmosphere, the surface areas of all the gels decreased with temperature as a result of collapse of micropores and shrinkage of mesopores. Unlike pure silica gel, which loses almost all surface area and densifies at 1000°C, the advantage of the alkyl-substituted gels is that they maintained a high surface area of 400 m2/g at 1000°C.Also with the Department of Agronomy.  相似文献   

19.
To reduce the amount of hazardous chemical bottle waste in the environment, we report the optimization research of silica extraction in chemical bottle waste into silica gel. Alkali fusion and sol–gel process were utilised to prepare silica gel effectively. The alkali fusion process was carried out by adding sodium hydroxide to produce sodium silicate. Afterwards, silica gel was prepared by the sol–gel method using hydrochloric acid. Box-Behnken Design (BBD) was applied to Optimisation factors the poptimiseactors affecting the silica recovery. The factors that optimised mass ratio, particle size, and temperature. The optimum recovery of silica gel was obtained by SiO2: NaOH mass ratio of 1:3, the particle size of 63–74 µm, and a temperature of 800 °C. The purity of silica gel optimum is 63.74% characterised using X-ray fluorescence. The structure of silica gel is the appearance of amorphous peaks at 2θ 20-30° characterised using an x-ray diffractogram. The silica gel surface was characterises using scanning electron microscopy-energy dispersive x-ray. It showed an irregular surface and characteristic showed that silica gel had a radius of 15.74 nm and a specific surface area of 297.08 m2.  相似文献   

20.
Several poly(amide-imide)-silica gel hybrids containing metal salts were prepared by the sol-gel reaction. Poly(amide-imide)s were prepared by low temperature polycondensation reaction of trimellitic anhydride (TMA) and diisocyanates [isophorone diisocyanate (IPDI), toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI), and 4,4′-methylenebis(phenyl isocyanate) (MDI). The inherent viscosities of the poly(amide-imide)s obtained ranged from 0.39–0.69 dL/g in DMAc. The hydrolysis and condensation reaction of tetramethoxysilane (TMOS) to form a silica gel network was affected in DMAc containing 5% LiCl, CaCl2 or ZnCl2 during the formation of poly(amide-imide)s. Films could be cast from DMAc solution and gradual evaporation of the solvent afforded pale yellow to amber colored hybrids in which the salts were dispersed at the molecular level. About 30–60% polymer was incorporated in the hybrids. Pyrolysis of the polymer silica gel hybrid samples at 600°C resulted in the formation of porous silica. Pore size and surface area studies on representative porous silica gels, SiG–4, SiG–5, and SiG–8, obtained upon the pyrolysis of the corresponding hybrids HPAI-4, HPAI-5 and HPAI-8, indicated that the silica gels were mesoporous in nature and had narrow pore size distribution (pore radius = 1.8 nm) with a surface area of 371 m2/g, 335 m2/g and 300 m2/g, respectively. The bottle shaped pores exhibited a pore volume of 0.227 cm3/g, 0.314 cm3/g and 0.280 cm3/g, respectively. Computer simulation modeling studies indicated that the poly(amide-imide) chains were not coiled and there was no agglomeration of the chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号