首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
A method including cryogenic grinding, melt pressing from the molten state, and quenching was used to prepare blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) in which the two phases were highly dispersed. The effect of melt‐pressing times on the thermal properties and relaxation behavior of PET/PEN films were characterized with differential scanning calorimetry and dielectric spectroscopy. For short melt‐pressing times, two glass‐transition, two crystallization, and two melting peaks were observed, indicating the presence of PET‐rich and PEN‐rich phases in these blends. Longer melt‐pressing times revealed a single glass transition and a single α‐relaxation process, showing that PET–PEN block copolymers were likely to be formed during the melt pressing. The experimental findings were examined in terms of the transesterification reactions between the blend components, as revealed by 1H NMR measurements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2570–2578, 2002  相似文献   

2.
The experimental procedures to place poly(ethylene 2,6‐naphthalate) (PEN) guest molecules within γ‐cyclodextrin (γ‐CD) host molecules are described along with the subsequent verification of inclusion‐compound (IC) formation. In addition, the simultaneous complexing of PEN and poly(ethylene terephthalate) (PET) with γ‐CD to form their common IC is documented. Coalescence from their common γ‐CD IC generates an intimate blend of the PET and PEN polymers contained therein. Thermal analysis via differential scanning calorimetry reveals thermal behavior indicative of an intimate blend of PET and PEN. 1H NMR analysis confirms that the intimate blending of PET and PEN achieved by coalescence from their common γ‐CD IC is not due to transesterification into a PET/PEN copolymer during thermal analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 139–148, 2003  相似文献   

3.
The lamellar‐level morphology of an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend was investigated with small‐angle X‐ray scattering (SAXS). Measurements were made as a function of the annealing time in the melt and the crystallization temperature. The characteristic morphological parameters at the lamellar level were determined by correlation function analysis of the SAXS data. At a low crystallization temperature of 120 °C, the increased amorphous layer thickness was identified in the blend, indicating that some PEN was incorporated into the interlamellar regions of PET during crystallization. The blend also showed a larger lamellar thickness than pure PET. A reason for the increase in the lamellar thickness might be that the formation of thinner lamellar stacks by secondary crystallization was significantly restricted because of the increased glass‐transition temperature. At high crystallization temperatures above 200 °C, the diffusion rates of noncrystallizable components were faster than the growth rates of crystals, with most of the noncrystallizable components escaping from the lamellar stacks. As a result, the blend showed an interfibrillar or interspherulitic morphology. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 317–324, 2002  相似文献   

4.
For the poly(butylene terephthalate) (PBT)/poly(ethylene terephthalate) blend system, the addition of a barium sulfate (BaSO4) particle, the surface of which was modified with a titanate coupling agent, suppressed the transesterification reaction. The polyester chain ends, considered one of the main sites of transesterification reactions, were blocked through a chemical reaction with the surface hydroxyl groups of the BaSO4 particle; a block copolymer‐like architecture was obtained with a BaSO4 linkage. The formation of the block copolymer‐like structure for the polyesters stuck to the BaSO4 particle facilitated crystallization by providing a crystallization nucleus without a significant transesterification reaction, resulting in higher mechanical properties. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2589–2597, 2001  相似文献   

5.
Liquid–liquid phase separation and subsequent homogenization during annealing in an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend were investigated with time‐resolved light scattering and optical microscopy. In the initial stage, the domain structure was developed by demixing via spinodal decomposition. In the later stage, the blend was homogenized by transesterification between the two polyesters. The crystallization rate depended on the sequence distribution of polymer chains, which was determined by the level of transesterification rather than the composition change of separated phases. When the crystallization of PEN preceded that of PET, PEN showed a higher melting point. However, when the crystallization rate of PEN was slower than that of PET, the previously formed PET crystals suppressed the crystallization of PEN, causing the coarse crystalline structure of PEN to have a lower melting point. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2625–2633, 2000  相似文献   

6.
The transesterification kinetics of poly(ethylene terephthalate) (PET)/copoly(oxybenzoate-p-terephthalate) (liquid crystalline polymer, LCP) (70/30 by weight) in the presence of small amount of bis(2-oxazoline) (BOZ) as chain extender was studied by using 1H nuclear magnetic resonance. The kinetic data was treated as a second-order reversible reaction, and it was found that the rate constants of transesterification at 270, 280 and 290 °C were 1.55×10−2, 2.20×10−2 and 3.01×10−2 min−1, respectively, the value of which was higher than the blend without addition of BOZ, 1.26×10−2 min−1, and the activation energy of PET/LCP transesterification was 84.4 kJ mol−1.  相似文献   

7.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

8.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

9.
The microstructure and crystallization behavior of a set of poly(ethylene terephthalate‐co‐5‐nitroisophthalate) copolymers (PETNI) containing 5‐nitroisophthalic units in the 10–50 mol % range were examined and compared to those of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate‐co‐isophthalate) (PETI) copolymers. A 13C NMR analysis of PETNI copolymers in a trifluoroacetic acid solution indicates that they are random copolymers with average sequence lengths in accordance with ideal polycondensation statistics. Differential scanning calorimetry (DSC) studies show that PETNI containing 5‐nitroisophthalic units up to 20 mol % are able to crystallize and that crystallization takes place in these copolymers at much slower rates than in PET. Wide‐angle X‐ray diffraction from powder and fibers reveals that crystallizable PETNI adopts the same triclinic crystal structure as PET, with the nitroisophthalate units being excluded from crystallites. Fourier transform infrared in combination with cross‐polarization/magic‐angle spinning 13C NMR spectroscopy demonstrates the occurrence of a gauche–trans conversion encompassing the crystallization process. A correlation between DSC and spectroscopic data leads us to conclude that the content of trans conformer in the noncrystallized phase of PETNI is higher than in both PET and PETI copolymers and suggests that secondary crystallization in the homopolymer must proceed by a mechanism different than that in copolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1553–1564, 2001  相似文献   

10.
The methanolysis of poly(ethylene terephthalate) (PET) copolymers containing 5‐nitroisophthalic units was investigated. Random copolyesters containing 10 and 30 mol % of such units were prepared via a two‐step melt copolycondensation of bis(2‐hydroxyethyl) terephthalate (BHET) and bis(2‐hydroxyethyl) 5‐nitroisophthalate (BHENI) in the presence of tetrabutyl titanate as a catalyst. First, the susceptibility of these two comonomers toward methanolysis was evaluated, and their reaction rates were estimated with high‐performance liquid chromatography. BHENI appeared to be much more reactive than both BHET and bis(2‐hydroxyethyl) isophthalate. The methanolysis of PET and the copolyesters was carried out at 100 °C, and the degradation process was followed by changes in the weight and viscosity, gel permeation chromatography, differential scanning calorimetry, and 1H and 13C NMR spectroscopy. The copolyesters degraded faster than PET, and the rate of degradation increased with the content of nitrated units. The products resulting from methanolysis were concluded to be dimethyl terephthalate, dimethyl 5‐nitroisophthalate, ethylene glycol, and small, soluble oligomers. For both PET and the copolyesters, an increase in crystallinity was observed during the degradation process, indicating that methanolysis preferentially occurred in the amorphous phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 76–87, 2002  相似文献   

11.
This article discusses an effective route to prepare amphiphilic diblock copolymers containing a poly(ethylene oxide) block and a polyolefin block that includes semicrystalline thermoplastics, such as polyethylene and syndiotactic polystyrene (s‐PS), and elastomers, such as poly(ethylene‐co‐1‐octene) and poly(ethylene‐co‐styrene) random copolymers. The broad choice of polyolefin blocks provides the amphiphilic copolymers with a wide range of thermal properties from high melting temperature ~270 °C to low glass‐transition temperature ~?60 °C. The chemistry involves two reaction steps, including the preparation of a borane group‐terminated polyolefin by the combination of a metallocene catalyst and a borane chain‐transfer agent as well as the interconversion of a borane terminal group to an anionic (? O?K+) terminal group for the subsequent ring‐opening polymerization of ethylene oxide. The overall reaction process resembles a transformation from the metallocene polymerization of α‐olefins to the ring‐opening polymerization of ethylene oxide. The well‐defined reaction mechanisms in both steps provide the diblock copolymer with controlled molecular structure in terms of composition, molecular weight, moderate molecular weight distribution (Mw/Mn < 2.5), and absence of homopolymer. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3416–3425, 2002  相似文献   

12.
Novel poly(ethylene terephthalate) (PET) copolyesters, abbreviated PEDMBT, containing optically active (2S,3S)‐2,3‐dimethoxy‐1,4‐butanediol (DMBD) as the second comonomer were investigated. Copolymers with ethylene glycol to DMBD ratios between 95/5 and 50/50 as well as the two parent homopolymers, PET and PDMBT, were prepared by a two‐step melt polycondensation. The resulting copolymers were found to approximately have the composition of the polymerization reaction feed and a random microstructure. Polymer intrinsic viscosities varied from 0.4 to 0.6 dL g?1 with weight‐average molecular weights ranging from 16,000 to 44,000. PEDMBT copolyesters were distinguished in being much more soluble than PET and showing an increasing affinity for water with the content in dimethoxy groups. According to the asymmetric constitution of DMBD, they displayed optical activity in solution. Both melting and glass‐transition temperatures of the copolyesters were observed to steadily decrease with the content in DMBD. PEDMBTs were found to be crystalline for contents in DMBD up to 30 mol %. Both powder and fiber X‐ray diffraction revealed that the same crystalline structure is shared by PET and the crystalline copolyesters. The homopolyester PDMBT resulted in becoming a polymer with a crystallinity comparable to PET but with a significantly different crystalline structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3250–3262, 2001  相似文献   

13.
Random copolymers of poly(ethylene terephthalate) (PET) and poly(ethylene 2,6-naphthalate) (PEN) were synthesized by melt condensation. In a series of thin, solvent cast films of varying PEN content, acetone diffusivity and solubility were determined at 35°C and an acetone pressure of 5.4 cm Hg. The kinetics of acetone sorption in the copolymer films are well described by a Fickian model. Both solubility and diffusivity decrease with increasing PEN content. The acetone diffusion coefficient decreases 93% from PET to PET/85PEN, a copolymer in which 85 weight percent of the dimethyl terephthalate in PET has been replace by dimethyl naphthalate 2,6-dicarboxylate. The acetone solubility coefficient in the amorphous regions of the polymer decreases by approximately a factor of two over the same composition range. The glass/rubber transition temperatures of these materials rise monotonically with increasing PEN content. Copolymers containing 20 to 80 wt % PEN are amorphous. Samples with <20% or >80% PEN contain measurable levels of crystallinity. Estimated fractional free volume in the amorphous regions of these samples is lower in the copolymers than in either of the homopolymers. Relative free volume as probed by positron annihilation lifetime spectroscopy (PALS) decreases systematically with increasing PEN content. Acetone diffusion coefficients correlate well with PALS results. Infrared spectroscopy suggests an increase in the fraction of ethylene glycol units in the trans conformation in the amorphous phase as the concentration of PEN in the copolymer increases. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 2981–3000, 1998  相似文献   

14.
Even though poly(ethylene oxide) (PEO) is immiscible with both poly(l ‐lactide) (PLLA) and poly(vinyl alcohol) (PVA), this article shows a working route to obtain miscible blends based on these polymers. The miscibility of these polymers has been analyzed using the solubility parameter approach to choose the proper ratios of the constituents of the blend. Then, PVA has been grafted with l ‐lactide (LLA) through ring‐opening polymerization to obtain a poly(vinyl alcohol)‐graft‐poly(l ‐lactide) (PVA‐g‐PLLA) brush copolymer with 82 mol % LLA according to 1H and 13C NMR spectroscopies. PEO has been blended with the PVA‐g‐PLLA brush copolymer and the miscibility of the system has been analyzed by DSC, FTIR, OM, and SEM. The particular architecture of the blends results in DSC traces lacking clearly distinguishable glass transitions that have been explained considering self‐concentration effects (Lodge and McLeish) and the associated concentration fluctuations. Fortunately, the FTIR analysis is conclusive regarding the miscibility and the specific interactions in these systems. Melting point depression analysis suggests that interactions of intermediate strength and PLOM and SEM reveal homogeneous morphologies for the PEO/PVA‐g‐PLLA blends. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1217–1226  相似文献   

15.
The sequence structure and thermal behavior of reactive blends of poly(ethylene terephthalate) (PET) with the liquid crystalline copolyester 60 PHB/PET containing 60 mol % of p-hydroxybenzoic acid (PHB) with addition of bis(2-oxazoline) (BOZ) were studied in detail. 1H NMR results indicate that both the number average sequence length of PET and PHB segments (L PET and L PHB) decrease with increasing mixing time and temperature via transesterification between PET and LCP. The transesterification is promoted in the presence of BOZ. As a consequence, the sequence structure and in turn the crystallization both from the glassy and the melt state and the melting behavior are markedly affected.  相似文献   

16.
Water sorption/desorption experiments were carried out on films (~ 220 μm thick) of amorphous poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) stored in ambient conditions for different periods of time (0.5-4 years) and of poly(ethylene terephthalate) (PET) with different degrees of crystalinity levels (0-29%) by means of FTIR spectroscopy. Water sorption/desorption kinetics follows Fick's law for all samples investigated. Water sorption isotherms, obtained from gravimetric methods, indicate a larger sorption capacity in the case of PEN materials. The apparent diffusion coefficients (D) are larger in the case of PET samples. The observed D values decrease with storage time (physical aging) of PEN samples and with the crystallinity of PET samples. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
PET/PEN共混物的相容性与酯交换反应   总被引:3,自引:0,他引:3  
通过用1H-NMR对聚对苯二甲酸乙二酯(PET)与聚2,6-萘甲酸乙二酯(PEN)、PET/PEN共聚物的共混物酯交换反应的研究,测得了反应速率常数、反应活化能和诱导期.根据酯交换反应程度和不同反应温度下的诱导期探讨了酯交换反应与相容性的关系,认为PET与PEN的相容导致或增强了酯交换反应,即相容性是酯交换的必要条件;同时酯交换的发生又促进了PET与PEN的相容.酯交换和相容是聚酯共混物熔融时相互关联的两个过程.  相似文献   

18.
Among the various methods available for recycling plastics waste, blending technology is a straightforward and relatively simple method for recycling. In this paper, a new blending technology, low‐temperature solid‐state extrusion, was discussed. Several recycled poly(terephthalate ethylene)/bisphenol a polycarbonate/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) blends (R‐PET/PC/SEBS blends) have been prepared by this technology. The results show that thermal and hydrolytic degradation of R‐PET is improved when extruding temperature was between the glass transition temperature (Tg) and cold crystallization temperature (Tcc). Elongation at break and notched impact strength were increased evidently, from 15.9% to 103.6, and from 8.6 kJ/m2 to 20.4 kJ/m2, respectively. The appropriate rotating speed of screws was between 100 and 150 rpm. At the same time, the appropriate rotating speed of the screws brings a suitable shear viscosity ratio of R‐PET and PC, which is of advantage to blending of R‐PET and PC together with SEBS. Dispersion of minor phase, PC and SEBS, became finer and smaller, to about 1 µm. Chain extender, Methylenediphenyl diisocyanate (MDI) can react with the end‐carboxyl group and end‐hydroxyl group of R‐PET. FT‐IR spectra testified that the reactions have been happened in the extruding process. A chain extending reaction not only increased the molecular weight of PET and PC, but also can synthesize PET‐g‐PC copolymer to act as a reactive compatilizer. An SEM micrograph shows that a micro‐fiber structure of PET was formed in the blend sample. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The effect of aging on the fractional crystallization of the poly(ethylene oxide) (PEO) component in the PEO/poly(3‐hydroxybutyrate) (PHB) blend has been investigated. The partial miscibility of the PEO/PHB blends with high PEO molecular weight (Mv = 2.0 × 105 g/mol) was confirmed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis. The fractional crystallization behavior of the PEO component in the PEO/PHB blends with low PEO content (not more than 30 wt% of PEO), before and after aging under vacuum at 25 °C for 6 months, were compared by DSC, fourier transform infrared microscopic spectroscopy, small angle X‐ray diffraction, and scanning electron microscopy. It was confirmed that nearly all the PEO components remain trapped within interlamellar regions of PHB for the PEO/PHB blends before aging. Under this condition, the crystallization of PEO is basically induced by much less active heterogeneities or homogeneous nucleation at high supercoolings. While, after the same PEO/PHB samples were stored at 25 °C in vacuum for 6 months, a part of the PEO component was expelled from the interlamellar region of PHB. Under this condition, the expelled PEO forms many separate domains with bigger size and crystallizes at low supercoolings by active heterogeneous nucleation, whereas the crystallization of PEO in the interlamellar region is still mainly induced by less active heterogeneities or homogeneous nucleation at extreme supercoolings. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2665–2676, 2005  相似文献   

20.
The bio‐based polyester, poly(ethylene 2,5‐furandicarboxylate) (PEF), was modified by 2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol (CBDO) via copolymerization and a series of copolyesters poly(ethylene‐co‐2,2,4,4‐tetramethyl‐1,3‐cyclobutanediol 2,5‐furandicarboxylate)s (PETFs) were prepared. After their chemical structures and sequence distribution were confirmed by nuclear magnetic resonance (1H‐NMR and 13C‐NMR), their thermal, mechanical, and gas barrier properties were investigated in detail. Results showed that when the content of CBDO unit in the copolyesters was increased up to 10 mol%, the completely amorphous copolyesters with good transparency could be obtained. In addition, with the increasing content of CBDO units in the copolyesters, the glass transition temperature was increased from 88.9 °C for PET to 94.3 °C for PETF‐23 and the tensile modulus was increased from 3000 MPa for PEF to 3500 MPa for PETF‐23. The barrier properties study demonstrated that although the introduction of CBDO units would increase the O2 and CO2 permeability of PEF slightly, PECF‐10 still showed better or similar barrier properties compared with those of PEN and PEI. In one word, the modified PEF copolyesters exhibited better mechanical properties, higher glass transition temperature, good barrier properties, and better clarity. They have great potential to be the bio‐based alternative to the popular petroleum‐based poly(ethylene terephthalate) (PET) when used as the beverage packaging materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3298–3307  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号