首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Interval sorption kinetics of acetone in solvent cast films of random poly(ethylene terephthalate)-co-(ethylene 2,6-naphthalate) (PET-co-PEN) are reported at 35°C and at acetone pressures ranging from 0 to 7.3 cm Hg. Polymer composition is varied systematically from 0% to 50% poly(ethylene 2,6-naphthalate). Equilibrium sorption is well described by the dual-mode sorption model. Interval sorption kinetics are described using a two-stage model that incorporates both Fickian diffusion and protracted polymer structural relaxation. The incorporation of low levels of PEN into PET significantly reduces the excess free volume associated with the glassy state and, for these interval acetone sorption experiments in ∼ 5 μm-thick films, decreases the fraction of acetone uptake controlled by penetrant-induced polymer structural relaxation. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2973–2984, 1999  相似文献   

2.
A method including cryogenic grinding, melt pressing from the molten state, and quenching was used to prepare blends of poly(ethylene terephthalate) (PET) and poly(ethylene naphthalene 2,6‐dicarboxylate) (PEN) in which the two phases were highly dispersed. The effect of melt‐pressing times on the thermal properties and relaxation behavior of PET/PEN films were characterized with differential scanning calorimetry and dielectric spectroscopy. For short melt‐pressing times, two glass‐transition, two crystallization, and two melting peaks were observed, indicating the presence of PET‐rich and PEN‐rich phases in these blends. Longer melt‐pressing times revealed a single glass transition and a single α‐relaxation process, showing that PET–PEN block copolymers were likely to be formed during the melt pressing. The experimental findings were examined in terms of the transesterification reactions between the blend components, as revealed by 1H NMR measurements. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2570–2578, 2002  相似文献   

3.
A series of random copolyesters was prepared by replacing up to 10 wt.% of the dimethyl terephthalate (DMT) in poly(ethylene terephthalate) (PET) with dimethyl 2,6-naphthalene dicarboxylate (NDC), isophthalic acid (IPA), or 2,5-bis-(4-carboxyphenyl)-1,3,4-oxadiazole (ODCA). Solution cast films of the resulting copolymers were prepared and characterized. Modification of PET with NDC and ODCA led to copolymers with glass transition temperatures higher than that of PET, while modification with IPA decreased the glass transition temperature. Copolymerization decreased crystallinity levels in all cases. The acetone solubility and acetone diffusion coefficient were determined by integral kinetic gravimetric sorption experiments at 35°C and 5.4 cm Hg acetone pressure. PET containing low levels of NDC had lower amorphous phase acetone diffusivity and solubility than PET, while PET modified with IPA had amorphous phase acetone diffusivity and acetone solubility similar to that of PET. PET modified with 5% ODCA had amorphous phase acetone diffusivity similar to that of PET, while PET modified with 10% ODCA had an amorphous phase acetone diffusivity value slightly lower than that of PET. Copolymers containing ODCA had somewhat higher acetone solubilities that PET, due mainly to the lower levels of crystallinity in the ODCA-containing polymers than in PET.  相似文献   

4.
Water sorption/desorption experiments were carried out on films (~ 220 μm thick) of amorphous poly(ethylene naphthalene-2,6-dicarboxylate) (PEN) stored in ambient conditions for different periods of time (0.5-4 years) and of poly(ethylene terephthalate) (PET) with different degrees of crystalinity levels (0-29%) by means of FTIR spectroscopy. Water sorption/desorption kinetics follows Fick's law for all samples investigated. Water sorption isotherms, obtained from gravimetric methods, indicate a larger sorption capacity in the case of PEN materials. The apparent diffusion coefficients (D) are larger in the case of PET samples. The observed D values decrease with storage time (physical aging) of PEN samples and with the crystallinity of PET samples. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

6.
The preparation of poly(2,6‐dimethyl‐1,4‐phenylene ether)‐b‐poly(ethylene terephthalate) block copolymer was performed by the reaction of the 2‐hydroxyethyl modified poly(2,6‐dimethyl‐1,4‐phenylene ether) (PPE‐EtOH) with poly(ethylene terephthalate) (PET) by an in situ process, during the synthesis of the polyester. The yield of the reaction of the 2‐hydroxyethyl functionalized PPE‐EtOH with PET was close to 100%. A significant proportion of the PET‐b‐PPE‐EtOH block copolymer was found to have short PET block. Nevertheless, the copolymer structured in the shape of micelles (20 nm diameter) and very small domains with 50–200 nm diameter, whereas unmodified PPE formed much larger domains (1.5 μm) containing copolymer. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3985–3991, 2008  相似文献   

7.
The kinetics of the transesterification reaction between poly(ethylene terephthalate) (PET) and poly(ethylene 2,6‐naphthalate) (PEN) with and without the addition of a chain extender were studied with 1H NMR. Different kinetic approaches were considered, and a second‐order, reversible reaction was accepted for the PET/PEN reactive blend system. The addition of 2,2′‐bis(1,3‐oxazoline) (BOZ) promoted the transesterification reaction between PET and PEN in the molten state. The activation energy of the transesterification reaction for the PET/PEN reactive blend with BOZ (94.0 kJ/mol) was lower than that without BOZ (168.9KJ/mol). The rate constant k took an almost constant value for blend samples with different compositions mixed at 275 °C. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2607–2614, 2001  相似文献   

8.
Poly(ethylene terephthalate)/copoly(succinic anhydride/ethylene oxide) copolymers, (PET/PES copolymers) were synthesized by the transreaction between PET and PES and characterized with GPC, 1H NMR, and DSC. Most of the copolymers obtained were random copolymers. The films cast of these copolymers were transparent. The thermal, mechanical properties, and biodegradability of the copolymers obtained were studied with respect to the composition and lengths of aliphatic and aromatic units in the copolymers. In the copolymers having high PET content, the melting points, due to the PET segment, were observed by DSC measurement, although the fusion heats of the copolymers were small. The enzymatic hydrolyzability by a lipase from Rhizopus arrhizus and biodegradability by activated sludge of the copolymers decreased with an increase in PET content. When the length of succinic acid unit in the copolymer was below 2, the hydrolyzability of the copolymers decreased considerably. The tensile strengths of the cast films prepared from the copolymers synthesized by the transreaction increased with an increase in PET content, whereas, the elongations at break decreased. Their tensile strengths were half, and the elongations were double compared to those of PET homopolymer film. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4478–4489, 2000  相似文献   

9.
The lamellar‐level morphology of an extruded poly(ethylene terephthalate) (PET)/poly(ethylene‐2,6‐naphthalate) (PEN) blend was investigated with small‐angle X‐ray scattering (SAXS). Measurements were made as a function of the annealing time in the melt and the crystallization temperature. The characteristic morphological parameters at the lamellar level were determined by correlation function analysis of the SAXS data. At a low crystallization temperature of 120 °C, the increased amorphous layer thickness was identified in the blend, indicating that some PEN was incorporated into the interlamellar regions of PET during crystallization. The blend also showed a larger lamellar thickness than pure PET. A reason for the increase in the lamellar thickness might be that the formation of thinner lamellar stacks by secondary crystallization was significantly restricted because of the increased glass‐transition temperature. At high crystallization temperatures above 200 °C, the diffusion rates of noncrystallizable components were faster than the growth rates of crystals, with most of the noncrystallizable components escaping from the lamellar stacks. As a result, the blend showed an interfibrillar or interspherulitic morphology. © 2002 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 317–324, 2002  相似文献   

10.
The synthesis and properties of poly(ethylene terephthalate) (PET) copolymers containing four bisester diamide structural units are reported. Two of the bisester diamides consist of three para‐substituted aromatic rings, and the other two consist of three meta‐substituted aromatic rings. The copolymers have been characterized by nuclear magnetic resonance, differential scanning calorimetry, and dilute solution viscometry. Three of the copolymers can be compression‐molded into amorphous films for oxygen barrier testing, and one of these three films can be oriented for additional barrier testing. The three amorphous films all have lower permeabilities than unoriented PET. However, this difference diminishes upon the orientation of the polymer films. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1668–1681, 2004  相似文献   

11.
The synthesis, microstructure, and thermal behavior of a series of poly(ethylene terephthalate) (PET) copolymers containing nitroterephthalic units are described. These novel copolyesters were synthesized by transesterification followed by melt copolycondensation of dimethyl terephthalate and dimethyl nitroterephthalate mixtures with ethylene glycol. The molar ratio of the two comonomers in the feed varied from 95/5 to 25/75. Furthermore, PET and poly(ethylene nitroterephthalate) homopolymers were synthesized with the same method and comparatively studied. Copolyester compositions were practically the same as in the feed, and weight‐average molecular weights ranged from 10,000 to 60,000. The two monomeric units were randomly distributed along the polymer chain, and the experimentally determined average sequence lengths were in accordance with ideal copolycondensation statistics. Melting temperatures and enthalpies of the copolyesters decreased with increasing content in nitroterephthalic units, and they all showed a single glass‐transition temperature superior to that of PET. They appeared to be stable up to 300 °C, and thermal degradation occurred in two well‐differentiated steps. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3761–3770, 2000  相似文献   

12.
Poly(ether ester)s consisting of poly(ethylene oxide) and poly(ethylene terephthalate) segments, EOET copolymers, could be used as shape memory polymers (SMP). Crystalline structural characters of the copolymers during the memory process were investigated by dynamic mechanical analysis, differential scanning calorimeter, wide-angle X-ray diffraction, polarizing microscopy, and recovery measurements. PEO crystals in stretched EOET copolymer preferentially oriented along fiber axis or stretch direction. During stretching, the structure of the copolymer undertake a transformation from spherulite to fiber, resulting in a crystalline morphology similar to shish-kebab, and recovery properties of stretched EOET samples were dependent on as-described crystalline structural characters that can be influenced by draw ratio. Driving forces for contraction come from the oriented chains, and only oriented or extended chains can be contributive to the recovery of deformation; these extended chains involve both crystalline and amorphous segments. The recovery process in shape memory behavior was noticed to be deorientation of oriented chains due to thermodynamic entropy effect, and was divided into three stages. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 101–112, 1999  相似文献   

13.
The acetone transport in poly(ethylene terephthalate) (PET) and related phenomena was investigated. Based on Harmon's model for Case I, Case II, and the anomalous transport, we analyzed the data of mass uptake. The diffusivity for Case I and the velocity for Case II satisfied the Arrhenius plot. It was found that the solvent moves from outer surfaces to the center according to Case I kinetics, and there is movement in the opposite direction according to Case II kinetics during the mass uptake. This result indicated that pure Case II behavior did not appear in the PET–acetone system. The saturated amount of acetone in PET satisfied the van't Hoff plot. X-ray diffraction pattern and DSC curve showed solvent-induced crystallites and thermal crystallites. The results of density measurement explained the difference of the sorption kinetics between the acetone-treated PET crystallites and thermally treated PET. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 163–169, 1998  相似文献   

14.
Electrical relaxation and conductivity processes in amorphous and semicrystalline poly(ethylene terephthalate) (PET) and poly(ethylene naphthalate) (PEN) homopolymers and certain PET/PEN copolymers have been studied by means of dielectric spectroscopy. Homopolymers and copolymers able to crystallize were subjected to successive thermal runs to investigate the influence of the thermal history upon the morphology and the electrical behavior of the polymeric systems. The morphology of the untreated as well as the heat‐treated specimens was determined by means of Differential Scanning Calorimetry (DSC). All samples exhibit β‐relaxation process, due to local motions of the C?O polar side groups, and α‐relaxation process associated to the glass/rubber transition. In the PEN spectrum an additional, subglass, mode was recorded, most probably attributed to cooperative motions of the naphthalene groups. Finally, the dynamic nature of the crystallization process is expressed via the over glass transition mode and the temperature dependence of dc conductivity recorded in amorphous PET, PEN, and PET/PEN (85/15) (wt/wt) samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3078–3092, 2006  相似文献   

15.
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films.  相似文献   

16.
For as‐extruded amorphous and biaxially orientated polyester films based on poly(ethylene terephthalate), poly(ethylene naphthalate), and copolymers containing poly(ethylene terephthalate) and poly(ethylene naphthalate) moieties, permeability, diffusion, and solubility coefficients are interpreted in terms of chain mobility. The influence of polymer morphology is determined by comparison of the data for as‐extruded amorphous sheets and materials produced with different biaxial draw ratios. The crystallinities of the samples were assessed using differential scanning calorimetry and density measurements. Changes in mobility at a molecular level were investigated using dielectric spectroscopy and dynamic mechanical thermal analysis. The study, in conjunction with our earlier work, leads to the conclusion that the key to understanding differences in gas transport is the difference in local chain motions rather than in free volume. This was illustrated by the permeability results for He, Ar, N2, and O2 in the range of polyesters. However, the permeability of CO2 was found to require alternative explanations because of polymer–penetrant interactions. For biaxially oriented samples, the differences in diffusivity are not only due to differences in local chain motions, but also additional constraints resulting from the increased crystallinity and chain rigidity—which also act to hinder segmental mobility. The effectiveness of the reduction in permeability in the biaxially oriented films is consequently determined by the ability of the polymer chains to effectively align and form crystalline structures. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2916–2929, 2004  相似文献   

17.
The morphology and crystallization behavior of poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) blends compatibilized with graft copolymers were investigated. PPS‐blend‐PET compositions were prepared in which the viscosity of the PPS phase was varied to assess the morphological implications. The dispersed‐phase particle size was influenced by the combined effects of the ratio of dispersed‐phase viscosity to continuous‐phase viscosity and reduced interfacial tension due to the addition of PPS‐graft‐PET copolymers to the blends. In the absence of graft copolymer, the finest dispersion of PET in a continuous phase of PPS was achieved when the viscosity ratio between blend components was nearly equal. As expected, PET particle sizes increased as the viscosity ratio diverged from unity. When graft copolymers were added to the blends, fine dispersions of PET were achieved despite large differences in the viscosities of PPS and PET homopolymers. The interfacial activity of the PPS‐graft‐PET copolymer appeared to be related to the molecular weight ratio of the PPS homopolymer to the PPS segment of the graft copolymer (MH/MA). With increasing solubilization of the PPS graft copolymer segment by the PPS homopolymer, the particle size of the PET dispersed phase decreased. In crystallization studies, the presence of the PPS phase increased the crystallization temperature of PET. The magnitude of the increase in the PET crystallization temperature coincided with the viscosity ratio and extent of the PPS homopolymer solubilization in the graft copolymer. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 599–610, 2000  相似文献   

18.
The improvement in oxygen barrier properties of poly(ethylene terephthalate) (PET) by incorporation of an impermeable phase such as crystallinity or talc platelets was examined. Crystallinity was induced by crystallization from the glassy state (cold crystallization). Microlayering was used to create talc‐filled structures with controlled layer architecture. The reduction of permeability in crystallized and talc‐filled PET was well described by Nielsen's model. Changes in permeability of crystalline PET could not be ascribed to the filler effect of crystallites only. Our data on solubility, obtained on the basis of measurements of the oxygen transport coefficients, confirmed a previous finding that the amorphous phase density of PET decreases upon crystallization. The data were amenable to interpretation by free volume theory. Talc‐filled materials processed by different methods showed the same permeability; however, much better mechanical properties were achieved by microlayering. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 847–857, 1999  相似文献   

19.
Blends of carboxyl functionalized poly(phenylene sulfide) (PPS) and poly(ethylene terephthalate) (PET) were shown to undergo an ester interchange reaction during melt blending. Pendent carboxyl functionality randomly incorporated along the PPS chain reacts with the ester moiety of PET to form a graft copolymer. A model compound, 2,4-bis(phenylthio benzoic acid), has been synthesized to assist in defining the level of carboxyl functionality on the PPS chain. Evidence of the grafting reaction has been gathered from infrared spectroscopy, solubility measurements, and electron microscopy. When added to blends of PPS and PET homopolymers, the graft copolymer significantly reduces the average domain size of the dispersed phase across the entire composition range. This study describes the role that graft copolymers formed by ester interchange reactions can play in compatibilizing this immiscible blend system, with particular focus on the conditions leading to increased grafting efficiency. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3473–3485, 1999  相似文献   

20.
The experimental procedures to place poly(ethylene 2,6‐naphthalate) (PEN) guest molecules within γ‐cyclodextrin (γ‐CD) host molecules are described along with the subsequent verification of inclusion‐compound (IC) formation. In addition, the simultaneous complexing of PEN and poly(ethylene terephthalate) (PET) with γ‐CD to form their common IC is documented. Coalescence from their common γ‐CD IC generates an intimate blend of the PET and PEN polymers contained therein. Thermal analysis via differential scanning calorimetry reveals thermal behavior indicative of an intimate blend of PET and PEN. 1H NMR analysis confirms that the intimate blending of PET and PEN achieved by coalescence from their common γ‐CD IC is not due to transesterification into a PET/PEN copolymer during thermal analysis. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 139–148, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号