首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development of visible‐light‐active photocatalysts is being investigated through various approaches. In this study, C60‐based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water‐soluble fullerol (C60(OH)x) instead of C60, we demonstrate that the adsorbed fullerol activates TiO2 under visible‐light irradiation through the “surface–complex CT” mechanism, which is largely absent in the C60/TiO2 system. Although fullerene and its derivatives have often been utilized in TiO2‐based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible‐light sensitizer of TiO2 is not well established. Fullerol/TiO2 exhibits marked visible photocatalytic activity not only for the redox conversion of 4‐chlorophenol, I?, and CrVI, but also for H2 production. The photoelectrode of fullerol/TiO2 also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO2 and C60/TiO2, which confirms that the visible‐light‐induced electron transfer from fullerol to TiO2 is particularly enhanced. The surface complexation of fullerol/TiO2 induced a visible absorption band around 400–500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO2. The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol.+) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO2 cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO2 cluster) as the origin of the visible‐light absorption.  相似文献   

2.
Photovoltaic conversion has been achieved by use of chloroplasts (photosynthetic organs) from spinach adsorbed on a nanocrystalline TiO2 film on an indium tin oxide (ITO) glass electrode (chloroplast/TiO2 electrode). The shape of the absorption spectrum of the chloroplast/TiO2 electrode is almost the same that of a dispersion of the chloroplasts. Absorption maxima of the chloroplast/TiO2 electrode observed at 430, 475, and 670 nm were attributed to carotenoid and chlorophyll molecules, suggesting that chloroplasts have been adsorbed by the nanocrystalline TiO2 film on the ITO electrode. The photocurrent responses of chloroplast/TiO2 electrodes were measured by using a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water and 100 mW cm?2 irradiation. The photocurrent of the chloroplast/TiO2 electrode was increased by adding water to the redox electrolyte. The photocurrent responses of chloroplast/TiO2 electrodes irradiated with monochromatic light (680 nm, the absorption band of photosystem II complexed with evolved oxygen) were measured by use of a solution of 0.1 M tetrabutylammonium hexafluorophosphate in acetonitrile as redox electrolyte in the presence or absence of water. A chloroplast/TiO2 electrode photocurrent was observed only when the redox electrolyte containing water was used, indicating that the oxygen evolved from water by photosystem II in chloroplasts adsorbed by a nanocrystalline TiO2 film on an ITO electrode irradiated at 680 nm is reduced to water by the catalytic activity of the platinum electrode. The maximum incident photon-to-current conversion efficiency (IPCE) was 0.8 % on irradiation at 670 nm.  相似文献   

3.
A new class of molecular dyads comprising metalloporphyrin‐linked alkynylplatinum(II) polypyridine complexes with carboxylic acids as anchoring groups has been designed and synthesized. These complexes can sensitize nanocrystalline TiO2 in dye‐sensitized solar cell (DSSC) studies. The photophysical, electrochemical, and luminescence properties of the complexes were studied and their excited‐state properties were investigated by nanosecond transient absorption spectroscopy, with the charge‐separated [Por.??{(C?C)Pt(tBu3tpy)}.+] state observed upon excitation. Excited‐state redox potentials were determined; the electrochemical data supports the capability of the complexes to inject an electron into the conduction band of TiO2. The complexes sensitize nanocrystalline TiO2 and exhibited photovoltaic properties, as characterized by current–voltage measurements under illumination of air mass 1.5 G sunlight (100 mWcm?2). A DSSC based on one of the complexes showed a short‐circuit photocurrent of 10.1 mAcm?2, an open‐circuit voltage of 0.64 V, and a fill factor of 0.52, giving an overall power conversion efficiency of 3.4 %.  相似文献   

4.
An investigation into the redox behaviour of 4‐ferrocenylcatechol bound to nanocrystalline TiO2 electrodes identified a limitation to the use of catechol as an electron‐transfer facilitating anchoring group. 4‐Ferrocenylcatechol was adsorbed to transparent nanocrystalline TiO2 electrodes. UV–visible spectra of the modified electrode were recorded in an acetonitrile‐electrolyte solution. At an applied potential of + 0.45 mV (vs Ag/AgCl/Cl?) the ferrocenyl group oxidized to the ferrocenium cation and the catecholate group oxidized to the benzoquinone form. Subsequent application of a potential of 0 V reduced the ferrocenium to ferrocene but, owing to the irreversibility of the catechol oxidation in aprotic solvents, benzoquinone is not reduced to catecholate and subsequently desorbs and is lost due into solution. Electrochromic switching of the ferrocenyl electrochromophore on TiO2 with aprotic electrolyte is, therefore, irreversible. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
合成了CdSe/ZnS核壳结构量子点(QDs), 将其作为光敏剂吸附在TiO2纳米晶薄膜上, 组装成量子点敏化太阳能电池(QDSSCs), 从电子注入速率和电池性能两方面对QDSSCs进行了表征. 为了定量研究ZnS层包覆对电子注入的影响, 运用飞秒瞬态光谱技术, 测试了包覆ZnS前后, CdSe-TiO2体系的电子注入速率. 实验测得ZnS包覆前后电子注入速率分别为7.14×1011s-1和2.38×10-11s-1, 可以看出包覆后电子注入速率明显降低, 仅为包覆前的1/3. 电池器件J-V性能测试表明, ZnS作为绝缘层包覆在CdSe的表面有效提高了QDSSCs的填充因子和稳定性, 但同时也导致了效率的降低. 上述结果说明了电子注入速率的降低是导致电池电流和效率下降的重要原因, 为今后优化核壳结构QDSSCs的电流和效率提供了依据.  相似文献   

6.
The aerobic decarboxylation of saturated carboxylic acids (from C2 to C5) in water by TiO2 photocatalysis was systematically investigated in this work. It was found that the split of C1? C2 bond of the acids to release CO2 proceeds sequentially (that is, a C5 acid sequentially forms C4 products, then C3 and so forth). As a model reaction, the decarboxylation of propionic acid to produce acetic acid was tracked by using isotopic‐labeled H218O. As much as ≈42 % of oxygen atoms of the produced acetic acids were from dioxygen (16O2). Through diffuse reflectance FTIR measurements (DRIFTS), we confirmed that an intermediate pyruvic acid was generated prior to the cut‐off of the initial carboxyl group; this intermediate was evidenced by the appearance of an absorption peak at 1772 cm?1 (attributed to C?O stretch of α‐keto group of pyruvic acid) and the shift of this peak to 1726 cm?1 when H216O was replaced by H218O. Consequently, pyruvic acid was chosen as another model molecule to observe how its decarboxylation occurs in H216O under an atmosphere of 18O2. With the α‐keto oxygen of pyruvic acid preserved in the carboxyl group of acetic acid, ≈24 % new oxygen atoms of the produced acetic acid were from molecular oxygen at near 100 % conversion of pyruvic acid. The other ≈76 % oxygen atoms were provided by H2O through hole/OH radical oxidation. In the presence of conduction band electrons, O2 can independently accomplish such C1? C2 bond cleavage of pyruvic acid to generate acetic acid with ≈100 % selectivity, as confirmed by an electrochemical experiment carried out in the dark. More importantly, the ratio of O2 participation in decarboxylation increased along with the increase of pyruvic acid conversion, indicating the differences between non‐substituted acids and α‐keto acids. This also suggests that the O2‐dependent decarboxylation competes with hole/OH‐radical‐promoted decarboxylation and depends on TiO2 surface defects at which Ti4c sites are available for the simultaneous coordination of substrates and O2.  相似文献   

7.
In the title compound, C6H18N22+·C4H4O42−·C4H6O4, the components lie on centres of symmetry in space group , such that the asymmetric unit contains three half‐mol­ecules. Despite the different mode (with respect to other di­carboxylic acids) adopted by the intermolecular self‐interaction of succinic acid derivatives, the overall structure of the title compound consists of anionic layers that are typical of the packing structures exhibited by other di­carboxylic acid analogues.  相似文献   

8.
9.
Electrochemical impedance spectroscopy (EIS) and transient voltage decay measurements are applied to compare the performance of dye sensitized solar cells (DSCs) using organic electrolytes, ionic liquids and organic‐hole conductors as hole transport materials (HTM). Nano‐crystalline titania films sensitized by the same heteroleptic ruthenium complex NaRu(4‐carboxylic acid‐4′‐carboxylate) (4,4′‐dinonyl‐2,2′‐bipyridyl)(NCS)2 , coded Z‐907Na are employed as working electrodes. The influence of the nature of the HTM on the photovoltaic figures of merit, that is, the open circuit voltage, short circuit photocurrent and fill factor is evaluated. In order to derive the electron lifetime, as well as the electron diffusion coefficient and charge collection efficiency, EIS measurements are performed in the dark and under illumination corresponding to realistic photovoltaic operating conditions of these mesoscopic solar cells. A theoretical model is established to interpret the frequency response off the impedance under open circuit conditions, which is conceptually similar to photovoltage transient decay measurements. Important information on factors that govern the dynamics of electron transport within the nanocrystalline TiO2 film and charge recombination across the dye sensitized heterojunction is obtained.  相似文献   

10.
An N3-type, Ru heteroleptic complex, AK1, having one bipyridyl ligand modified with COOH groups for tethering to TiO2 and a second bipyridyl ligand modified with two lipoic acid units for binding to platinum, was synthesized. The photophysical and spectroelectrochemical properties were studied in solution, on TiO2, in a dye-sensitized solar cell and on a Pt wire electrode. The results showed that AK1 can produce a photocurrent on TiO2. Furthermore, AK1 binds to Pt via the lipoic acid ligand but not via the carboxylic acid group, and can be electrochemically addressed by the Pt via the lipoic acid linkage.  相似文献   

11.
Polymerizations of vinyl acetate are photocatalyzed by TiO2 nanoparticles in presence of carboxylic acids including propionic acid, n-butyric acid and pivalic acid. Nuclear magnetic resonance (NMR) analysis using 13C-labeled n-butyric acid as the probing molecule demonstrates that the polymerization of vinyl acetate is initiated by alkyl radicals generated from photocatalytic decarboxylation of the carboxylic acid. A universal mechanism is established with extending the photo-Kolbe reaction from acetic acid to the carboxylic acids with longer chains. Kinetics studies find that n-butyric acid has higher initiation rate than acetic acid, indicating more efficient decarboxylation for butyric acid than acetic acid in their aqueous solutions. It is proved that carboxylates participate in the decarboxylation. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectra are obtained with aqueous solutions of the carboxylic acids in contact with a layer of the TiO2 nanoparticles, and the observations are discussed with respect to the interaction between the TiO2 and carboxylic acids.  相似文献   

12.
The efficient electron injection by direct dye‐to‐TiO2 charge transfer and strong adhesion of mussel‐inspired synthetic polydopamine (PDA) dyes with TiO2 electrode is demonstrated. Spontaneous self‐polymerization of dopamine using dip‐coating (DC) and cyclic voltammetry (CV) in basic buffer solution were applied to TiO2 layers under a nitrogen atmosphere, which offers a facile and reliable synthetic pathway to make the PDA dyes, PDA‐DC and PDA‐CV, with conformal surface and perform an efficient dye‐to‐TiO2 charge transfer. Both synthetic methods led to excellent photovoltaic results and the PDA‐DC dye exhibited larger current density and efficiency values than those in the PDA‐CV dye. Under simulated AM 1.5 G solar light (100 mW cm?2), a PDA‐DC dye exhibited a short circuit current density of 5.50 mW cm?2, corresponding to an overall power conversion efficiency of 1.2 %, which is almost 10 times that of the dopamine dye‐sensitized solar cell. The PDA dyes showed strong adhesion with the nanocrystalline TiO2 electrodes and the interface engineering of a dye‐adsorbed TiO2 surface through the control of the coating methods, reaction times and solution concentration maximized the overall conversion efficiency, resulting in a remarkably high efficiency.  相似文献   

13.
Au/TiO2 nanorod composites with different ratios of [TiO2]:[Au] have been prepared by chemically reducing AuCl4 on the positively charged TiO2 nanorods surface and used to modify boron‐doped diamond (BDD) electrodes. The electrochemical behaviors of catechol on the bare and different Au/TiO2 nanorod composites‐modified BDD electrodes are studied. The cyclic voltammetric results indicate that these different Au/TiO2 nanorod composites‐modified BDD electrodes can enhance the electrocatalytic activity toward catechol detection, as compared with the bare BDD electrode. Among these different conditions, the Au/TiO2‐BDD3 electrode (the ratio of [TiO2]:[Au] is 27:1) is the most choice for catechol detection. The electrochemical response dependences of the Au/TiO2‐BDD3 electrode on pH of solution and the applied potential are studied. The detection limit of catechol is found to be about 1.4 × 10‐6 M in a linear range from 5 × 10‐6 M to 200 × 10‐6 M on the Au/TiO2‐BDD3 electrode.  相似文献   

14.
The inverse‐micellar preparation of Si nanoparticles (Nps) was improved by utilizing sodium naphthalide. The Si Nps were subsequently functionalized with 4‐vinylbenzoic acid for their attachment onto TiO2 films of dye‐sensitized solar cells (DSSCs). The average diameter of the COOH‐functionalized Si (Si? COOH) Nps was 4.6(±1.7) nm. Depth profiling by secondary‐ion mass spectrometry revealed that the Si Nps were uniformly attached onto the TiO2 films. The number of RuII dye molecules adsorbed onto a TiO2 film that was treated with the Si? COOH Nps was 42 % higher than that on the untreated TiO2 film. As a result, DSSCs that incorporated the Si? COOH Nps exhibited higher short‐circuit photocurrent density and an overall energy‐conversion efficiency than the untreated DSSCs by 22 % and 27 %, respectively. This enhanced performance, mostly owing to the intramolecular charge‐transfer to TiO2 from the dye molecules that were anchored to the Si? COOH Nps, was confirmed by comparing the performance with two different RuII–bipyridine dyes (N719 and N749).  相似文献   

15.
《化学:亚洲杂志》2018,13(18):2664-2670
A straightforward Lewis acid‐promoted protocol for 3,3′‐bisindolylmethanes (BIMs) synthesis by reductive alkylation of indoles at the C3 position with carboxylic acids in the presence of hydrosilane was developed for the first time. Instead of aldehydes, more readily available, stable, and easy‐to‐handle carboxylic acids have been employed as alternative alkylating agents. As an efficient organocatalyst, B(C6F5)3 enables the reductive alkylation of various substituted indole derivatives with carboxylic acids with up to 98 % yield at room temperature and under neat conditions. This metal‐free strategy offers an alternative approach for the direct functionalization of indoles to BIMs with carboxylic acids and such protocol allows selective reduction of carboxylic acid to aldehyde in combination with C−C bond formation.  相似文献   

16.
程辉  姚江宏  曹亚安 《物理化学学报》2012,28(11):2632-2640
采用溶胶-凝胶法制备出In 表面修饰的TiO2 (TiO2-Inx%)纳米粒子, x%代表在In 掺杂的TiO2样品中In3+与In3+和Ti4+离子摩尔百分含量. 利用二(四丁基铵)顺式-双(异硫氰基)双(2,2''-联吡啶-4,4''-二羧酸)钌(II)(N719)作为敏化剂, 制备出N719/TiO2/FTO (氟掺杂锡氧化物)和N719/TiO2-Inx%/FTO染料敏化薄膜电极. 光电转换效率实验表明, 在薄膜电极+0.5 mol·L-1 LiI+0.05 mol·L-1 I2的三甲氧基丙腈(MPN)溶液+Pt 光电池体系中,N719/TiO2-Inx%/FTO薄膜电极的光电转换效率均高于N719/TiO2/FTO, 其中N719/TiO2-In0.1%/FTO的光电转换效率比N719/TiO2/FTO提高了20%. 利用X 射线衍射(XRD)、X 射线光电子能谱(XPS)、漫反射吸收光谱(DRS)、荧光(PL)光谱和表面光电流作用谱确定了TiO2-Inx%样品中In3+离子的存在方式和能带结构; 利用表面光电流作用谱研究了N719/TiO2-Inx%/FTO薄膜电极的光致界面电荷转移过程. 结果表明, In3+离子在TiO2表面形成O-In-Cln (n=1, 2)物种, 该物种的表面态能级位于导带下0.3 eV处; 在光电流产生过程中, O-In-Cln (n=1, 2)表面态能级有效地抑制了光生载流子在TiO2-Inx%层的复合, 促进了阳极光电流的增加, 从而导致N719/TiO2-Inx%/FTO薄膜电极的光电转化效率高于N719/TiO2/FTO, 并进一步讨论了光致界面电荷转移的机理.  相似文献   

17.
A new‐type of donor–acceptor π‐conjugated (D‐π‐A) fluorescent dyes NI3 – NI8 with a pyridine ring as electron‐withdrawing‐injecting anchoring group have been developed and their photovoltaic performances in dye‐sensitized solar cells (DSSCs) are investigated. The short‐circuit photocurrent densities and solar energy‐to‐electricity conversion yields of DSSCs based on NI3 – NI8 are greater than those for the conventional D‐π‐A dye sensitizers NI1 and NI2 with a carboxyl group as the electron‐withdrawing anchoring group. The IR spectra of NI3 – NI8 adsorbed on TiO2 indicate the formation of coordinate bonds between the pyridine ring of dyes NI3 – NI8 and the Lewis acid sites (exposed Tin+ cations) of the TiO2 surface. This work demonstrates that the pyridine rings of D‐π‐A dye sensitizers that form a coordinate bond with the Lewis acid site of a TiO2 surface are promising candidates as not only electron‐withdrawing anchoring group but also electron‐injecting group, rather than the carboxyl groups of the conventional D‐π‐A dye sensitizers that form an ester linkage with the Brønsted acid sites of the TiO2 surface.  相似文献   

18.
The adsorption of carboxylic acids (formic, acetic, and pyruvic acid) from corresponding solutions in CH2Cl2 solvent on Al2O3 and TiO2 thin films has been studied by attenuated total reflection infrared spectroscopy. The metal‐oxide films were vapor‐deposited on a Ge internal reflection element, which was mounted into a specially designed flow cell. The system allowed in situ monitoring of the processes occurring at the solid‐liquid interface. The metal‐oxide films were characterized by X‐ray photoelectron spectroscopy, ellipsometry, and atomic force microscopy. Formic acid and acetic acid adsorbed predominantly as bridging species on alumina surfaces. Adsorbed free acids were not observed under a flow of neat solvent. Based on the position of the νAS(COO) and of the keto‐group stretching vibration of the pyruvate ion, pyruvic acid is proposed to coordinate to the Al2O3 surface in a monodentate fashion, whereas, on TiO2, a bidentate species is preferred. Comparison of the adsorption behavior on the vapor‐deposited alumina film and on an α‐Al2O3 layer deposited from a water suspension of the corresponding metal‐oxide powder indicated that pyruvic acid adsorbs in a similar mode, irrespective of the metal‐oxide deposition technique.  相似文献   

19.
The solubility of fullerene C60 and a fullerene mixture [C60 (75%), C70 (24%), C76–80 (1%)] in linear alkanoic acids (C2–C9) was determined at 20°C. The solubilities of C60 and a fullerene mixture in carboxylic acids were examined in relation to the number of carbon atoms in the carboxylic acid.  相似文献   

20.
In the presence of molecular oxygen, a {001}‐faceted nanocrystalline anatase TiO2 catalyst enabled the selective oxidation of nonactivated aliphatic alcohols to the corresponding aldehydes or ketones under visible light. The reaction shows excellent conversion and selectivity towards the formation of the carbonyl products without over‐oxidation to the corresponding carboxylic acids. The exceptional reactivity of the catalyst is possibly due to the absorption of visible light originating from a stronger interaction of alcohol with the {001} facet, which facilitates the modification of the band structure of TiO2, thus facilitating the photogenerated hole transfer and subsequent oxidation processes. The experimental results have also been corroborated by first‐principles quantum chemical DFT calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号