首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
Amphiphilic graft copolymers were prepared via the radical copolymerization of poly(ethylene oxide) (PEO) macromonomers with fluorocarbon or hydrocarbon acrylates in toluene with 2,2′‐azobisisobutyronitrile (AIBN) as an initiator. 1H NMR spectroscopy confirmed that the composition of the graft copolymers corresponded well to the monomer feed. For gel electrolytes prepared from the amphiphilic copolymers, the nature of the ionophobic parts of the amphiphilic graft copolymers had a great influence on the ion conductivity. Gel electrolytes based on graft copolymers containing fluorocarbon side chains showed significantly higher ion conductivity than electrolytes based on graft copolymers containing hydrocarbon groups. The ambient‐temperature ion conductivity was about 2.6 mS/cm at 20 °C for a gel electrolyte based on an amphiphilic graft copolymer consisting of an acrylate backbone carrying PEO and fluorocarbon side chains. Corresponding gels based on graft copolymers with PEO side chains and hydrocarbon groups showed an ambient‐temperature ion conductivity of about 1.2 mS/cm. The gel electrolytes contained 30 wt % copolymer and 70 wt % 1 M LiPF6 in an ethylene carbonate/γ‐butyrolactone (2/1 w/w) mixture. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2223–2232, 2001  相似文献   

2.
Cationic copolymerization of tetrahydrofuran (THF) with ethylene oxide (EO) in the presence of diols leads to dihydroxy terminated telechelic copolymers. In the present article the influence of copolymerization conditions on the copolymer structure was studied in view of conclusions derived from studies of copolymerization kinetics and mechanism. It was shown that according to established copolymerization mechanism, the number average molecular weights increase linearly with conversion up to Mn ≅ 2500, hydroxyl end groups are bound exclusively to EO units and copolymers are composed of [EO]–[THF]y segments. Microstructure of copolymers may be to some extent regulated by changing reaction conditions. Some physical properties of copolymers also were studied. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3455–3463, 1999  相似文献   

3.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with biphenyl (BP) units in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from these copolymers (BP-PEG) employing lithium perchlolate (LiClO4) as a lithium salt and their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of chain length ratio between the flexible PEO chains and rigid BP units. The ionic conductivity increases with increasing PEO length in BP-PEG. The salt concentrations in BP-PEG/LiClO4 complexes were also changed and the results show that maximum conductivity is obtained at [EO]/[Li+]≈8. The reasons for these findings are discussed in terms of the number of charge carriers and the mobility of the polymer chain.  相似文献   

4.
The synthesis and characterization of novel poly(CTFE‐g‐oligoEO) graft copolymers [chlorotrifluoroethylene (CTFE) and ethylene oxide (EO)] are presented. First, vinyl ether monomers bearing oligo(EO) were prepared by transetherification of ω‐hydroxyoligo(EO) with ethyl vinyl ether catalyzed by a palladium complex in 70–84% yields. Two vinyl ethers of different molecular weights (three and 10 EO units) were thus obtained. Then, radical copolymerization of the above vinyl ethers with CTFE led to alternating poly(CTFE‐alt‐VE) copolymers that bore oligo(OE) side chains in satisfactory yields (65%). These original poly(CTFE‐g‐oligoEO) graft copolymers were characterized by 1H, 19F, and 13C NMR spectroscopy. Their molecular weights reached 19,000 g mol?1, and their thermal properties were investigated while their glass transition temperatures ranged between ?42 and ?36 °C. Their thermogravimetric analyses under air showed decomposition temperatures of 270 °C with 10% weight loss (Td,10%). These novel copolymers are of potential interest as polymer electrolytes in lithium ion batteries, showing room temperature conductivities ranging from 4.49 × 10?7 to 1.45 × 10?6 S cm?1 for unplasticized material. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

5.
Poly(styrene-graft-ethylene oxide), having alkyl chains (C12 or C18) on the polystyrene main chain or on the poly(ethylene oxide) (PEO) side chains, were synthesized. The main chain was alkylated by first ionizing amide groups in a styrene/acrylamide copolymer with tert-butoxide, and then using the amide anions as sites for reactions with 1-bromoalkanes. An excess of amide anions was used in the reaction, and the remaining anions were subsequently utilized as initiator sites for the anionic polymerization of ethylene oxide (EO). Synthesis of poly(styrene-graft-ethylene oxide) with alkylated side chains was accomplished by polymerization of EO onto the ionized styrene/acrylamide copolymer, followed by an alkylation of the terminal alkoxide anions with 1-bromoalkanes. The alkylated graft copolymers were structurally characterized by using elemental analysis, 1H NMR, GPC, and IR spectroscopy. DSC analysis showed that only graft copolymers with PEO contents exceeding about 50 wt % and side chain crystallinities comparable to those of homo-PEO. Main chain alkylated graft copolymers generally had higher crystalinities, as compared to nonalkylated and side chain alkylated samples. The graft copolymers absorbed water corresponding to one water molecule per EO unit at low PEO contents. The water absorption increased progressively at PEO contents above 30 wt % for main chain alkylated samples and above 50 wt % for non-alkylated samples. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
The living cationic polymerization of octadecyl vinyl ether (ODVE) was achieved with an 1‐(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3]/EtAlCl2 initiating system in hexane in the presence of an added weak Lewis base at 30 °C. In contrast to conventional polymers, poly(octadecyl vinyl ether) underwent upper‐critical‐solution‐temperature‐type phase separation in various solvents, such as hexane, toluene, CH2Cl2, and tetrahydrofuran, because of the crystallization of octadecyl chains. Amphiphilic block and random copolymers with crystallizable substituents of ODVE and 2‐methoxyethyl vinyl ether (MOVE) were synthesized via living cationic polymerization under similar conditions. Aqueous solutions of the copolymers yielded physical gels upon cooling because of strong interactions between ODVE units, regardless of the copolymer structure. The product gels, however, exhibited different viscoelastic properties: A 20 wt % solution of a block copolymer (400/20 MOVE/ODVE) became a soft physical gel that behaved like a typical gel, whereas the corresponding random copolymer gave a transparent but stiff gel with a certain relaxation time. Differential scanning calorimetry analysis confirmed that the crystalline–amorphous transition of the octadecyl chains was a key step for inducing such physical gelation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1155–1165, 2005  相似文献   

7.
Poly (acrylate-co-imide)-based gel polymer electrolytes are synthesized by in situ free radical polymerization. Infrared spectroscopy confirms the complete polymerization of gel polymer electrolytes. The ionic conductivity of gel polymer electrolytes are measured as a function of different repeating EO units of polyacrylates. An optimal ionic conductivity of the poly (PEGMEMA1100-BMI) gel polymer electrolyte is determined to be 4.8 × 10–3 S/cm at 25 °C. The lithium transference number is found to be 0.29. The cyclic voltammogram shows that the wide electrochemical stability window of the gel polymer electrolyte varies from −0.5 to 4.20 V (vs. Li/Li+). Furthermore, we found the transport properties of novel gel polymer electrolytes are dependent on the EO design and are also related to the rate capability and the cycling ability of lithium polymer batteries. The relationship between polymer electrolyte design, lithium transport properties and battery performance are investigated in this research.  相似文献   

8.
A novel method for synthesis of amphiphilic macrocyclic graft copolymers with multi‐polystyrene lateral chains is suggested, by combination of anionic ring‐open polymerization (AROP) with atom transfer radical polymerization (ATRP). The anionic ring‐opening copolymerization of ethylene oxide (EO) and ethoxyethyl glycidyl ether (EEGE) was carried out first using triethylene glycol and diphenylmethylpotassium (DPMK) as coinitiators; the monomer reactivity ratio of them are r1(EO) = 1.20 ± 0.01 and r2(EEGE) = 0.76 ± 0.02 respectively. The obtained linear well‐defined α,ω‐dihydroxyl poly(ethylene oxide) with pendant protected hydroxylmethyls (l‐poly(EO‐co‐EEGE)) was cyclized by reaction with tosyl chloride (TsCl) in the presence of solid KOH. The crude cyclized product containing the extended linear chain polymer was hydrolyzed and then purified by treat with α‐CD. The pure cyclic copolymer with multipendant hydroxymethyls [c‐poly(EO‐co‐Gly)] was esterified by reaction with 2‐bromoisobutyryl bromide, and then used as macroinitiators to initiate polymerization of styrene (St), and a series of amphiphilic macrocyclic grafted copolymers composed of a hydrophilic PEO as ring and hydrophobic polystyrene as side chains (c‐PEO‐g‐PS) were obtained. The intermediates and final products were characterized by GPC, NMR and MALDI‐TOF in detail. The experimental results confirmed that c‐PEO‐g‐PS shows stronger conjugation ability with the dyes than the corresponding comb‐PEO‐g‐PS. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5824–5837, 2007  相似文献   

9.
Graft copolymers consisting of polyamide 12 or poly(ethylene-co-vinyl alcohol) as backbone polymers and side chains of poly(ethylene oxide) have been synthesized. The amide and hydroxyl groups of the backbone polymers were used as initiation sites for the polymerization of ethylene oxide (EO). Potassium tert-butoxide was used for ionization of the active groups, and the polymerization of EO was carried out in dimethyl sulfoxide. The graft copolymers were characterized with respect to molecular weight and composition using elemental analysis, 1H-NMR, gel permeation chromatography, and FTIR. The size of the side chains varied between 300 and 1000 g/mol. Thermal properties were examined by DSC. The graft copolymers showed increasing crystallinity and increasing melt temperature with increasing molecular weight of the side chains. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 803–811, 1998  相似文献   

10.
A series of well‐defined double hydrophilic double‐grafted copolymers, consisting of polyacrylate backbone, hydrophilic poly(2‐(diethylamino)ethyl methacrylate) and poly(ethylene glycol) side chains, were synthesized by successive atom transfer radical polymerization. The backbone, poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) comb copolymer, was firstly prepared by ATRP of PEGMEA macromonomer via the grafting‐through route followed by reacting with lithium diisopropylamide and 2‐bromopropionyl chloride to give PPEGMEA‐Br macroinitiator of ATRP. Finally, poly[poly(ethylene glycol) methyl ether acrylate]‐g‐poly(2‐(diethylamino)ethyl methacrylate) graft copolymers were synthesized by ATRP of 2‐(diethylamino)ethyl methacrylate using PPEGMEA‐Br macroinitiator via the grafting‐from route. Poly(2‐(diethylamino)ethyl methacrylate) side chains were connected to polyacrylate backbone through stable C? C bonds instead of ester connections, which is tolerant of both acidic and basic environment. The molecular weights of both backbone and side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.39). The results of fluorescence spectroscopy, dynamic laser light scattering and transmission electron microscopy showed this double hydrophilic copolymer was stimuli‐responsive to both pH and salinity. It can aggregate to form reversible micelles in basic surroundings which can be conveniently dissociated with the addition of salt at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3142–3153, 2009  相似文献   

11.
A series of well‐defined double hydrophilic graft copolymers containing poly[poly(ethylene glycol) methyl ether acrylate] (PPEGMEA) backbone and poly[poly(ethylene glycol) ethyl ether methacrylate] (PPEGEEMA) side chains were synthesized by the combination of single electron transfer‐living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained comb copolymer was treated with lithium diisopropylamide and 2‐bromoisobutyryl bromide to give PPEGMEA‐Br macroinitiator. Finally, PPEGMEA‐g‐PPEGEEMA graft copolymers were synthesized by ATRP of poly(ethylene glycol) ethyl ether methacrylate macromonomer using PPEGMEA‐Br macroinitiator via the grafting‐from route. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept narrow (Mw/Mn ≤ 1.20). This kind of double hydrophilic copolymer was found to be stimuli‐responsive to both temperature and ion (0.3 M Cl? and SO). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 647–655, 2010  相似文献   

12.
A series of well‐defined graft copolymers with a polyallene‐based backbone and polystyrene side chains were synthesized by the combination of living coordination polymerization of 6‐methyl‐1,2‐heptadien‐4‐ol and atom transfer radical polymerization (ATRP) of styrene. Poly(alcohol) with polyallene repeating units were prepared via 6‐methyl‐1,2‐heptadien‐4‐ol by living coordination polymerization initiated by [(η3‐allyl)NiOCOCF3]2 firstly, followed by transforming the pendant hydroxyl groups into halogen‐containing ATRP initiation groups. Grafting‐from route was employed in the following step for the synthesis of the well‐defined graft copolymer: polystyrene was grafted to the backbone via ATRP of styrene. The cleaved polystyrene side chains show a narrow molecular weight distribution (Mw/Mn = 1.06). This kind of graft copolymer is the first example of graft copolymer via allene derivative and styrenic monomer. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5509–5517, 2007  相似文献   

13.
A well‐defined comblike copolymer of poly(ethylene oxide‐co‐glycidol) [(poly(EO‐co‐Gly)] as the main chain and poly(ε‐caprolactone) (PCL) as the side chain was successfully prepared by the combination of anionic polymerization and ring‐opening polymerization. The glycidol was protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether (EPEE) first, and then ethylene oxide was copolymerized with EPEE by an anionic mechanism. The EPEE segments of the copolymer were deprotected by formic acid, and the glycidol segments of the copolymers were recovered after saponification. Poly(EO‐co‐Gly) with multihydroxyls was used further to initiate the ring‐opening polymerization of ε‐caprolactone in the presence of stannous octoate. When the grafted copolymer was mixed with α‐cyclodextrin, crystalline inclusion complexes (ICs) were formed, and the intermediate and final products, poly(ethylene oxide‐co‐glycidol)‐graft‐poly(ε‐caprolactone) and ICs, were characterized with gel permeation chromatography, NMR, differential scanning calorimetry, X‐ray diffraction, and thermogravimetric analysis in detail. The obtained ICs had a channel‐type crystalline structure, and the ratio of ε‐caprolactone units to α‐cyclodextrin for the ICs was higher than 1:1. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3684–3691, 2006  相似文献   

14.
Poly[lithium-N(4-sulfophenyl) maleimide -co- methoxy oligo-(oxyethylene) methacrylates] [P(LiSMOEn)s] with three different oligoether side chains and different salt concentrations were synthesized. The copolyelectrolytes are essentially random in structure, with blocks of methoxy oligo(oxyethylene) meth-acrylate (MOEnM) recurring sporadically in between the salt units of N(4-sulfophenyl) maleimide. They all show two glass transitions in the temperature range of ?100 to 100°C. The first one below ?30°C is assigned to the oligo(oxyethylene) side chain (T g1), while the second one located between 20 and 50°C is attributed to the main chain of the polymer host (T g2). The maximum ionic conductivity of the copolymer electrolytes, 1.6 × 10?7 S cm?1 at 25°C, occurs at lithium salt concentration [Li+]/[EO] = 2.2 mol%. The ionic conductive behavior of the copolyelectrolytes follows the Vogel-Tammann-Fulcher (VTF) equation. Moreover, a special VTF behavior exists in the copolymers with shorter oligoether side chain and higher salt concentration. Sweep voltammetric results indicate that these copolyelectrolytes have a good electrochemical stability window.  相似文献   

15.
Water-soluble ABC triblock copolymers of methyl vinyl ether (MVE), ethyl vinyl ether (EVE), and methyl tri(ethylene glycol) vinyl ether (MTEGVE) of various block sequences and carrying 20 monomer units in each block were synthesized by living cationic polymerization. In addition to the triblocks, one AB diblock, one BA diblock, and one statistical copolymer of MVE and MTEGVE carrying 20 units of each type of monomer were synthesized as controls. Moreover, three homopolymers each carrying 20 units of MVE and end groups of varying hydrophobicity were synthesized using three different initiators. The molecular weights and molecular weight distributions of all the polymers were determined by gel permeation chromatography (GPC) in tetrahydrofuran (THF). The number average degrees of polymerization (DPns) and composition of all the polymers were calculated by proton nuclear magnetic resonance (1H-NMR) spectroscopy. The molecular weights and degrees of polymerization corresponded to the values expected from the monomer/initiator ratios. The calculated polydispersities were reasonably narrow at 1.3. Aqueous GPC studies at room temperature on the triblock copolymers showed that the polymers exist as isolated chains (unimers) in solution but they tend to assemble and form micelles in the presence of a sufficiently high salt concentration apparently due to the insolubility of the EVE units under the latter conditions. Triblocks with a different block sequence exhibited a different susceptibility to salt-induced micellization, as indicated by the retention volume of the micelles and the relative micelle/unimer peak areas. Similarly, the cloud points of the triblock copolymers covered a relatively wide temperature range from 56 to 72°C. These differences in micellization and cloud points suggest a profound effect of the location of the hydrophilic MTEGVE block on copolymer association. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 1181–1195, 1997  相似文献   

16.
A random copolymer of ethylene oxide with CO2, namely, poly(ethylene carbonate/ethylene oxide) (P(EC/EO)), has been synthesized as a novel candidate for polymer electrolytes. Electrolyte composed of P(EC/EO) and lithium bis(fluorosulfonyl)imide has an ionic conductivity of 0.48 mS cm−1 and a Li transference number (t +) of 0.66 at 60 °C. To study ion‐conductive behavior of P(EC/EO)‐based electrolytes, the Fourier transform infrared (FT‐IR) technique is used to analyze the interactions between Li+ and functional groups of the copolymer. The carbonate groups may interact preferentially with Li+ rather than the ether groups in P(EC/EO). This study suggests that copolymerization of carbonate and flexible ether units can realize both high conductivity and t + for polymer electrolytes. High‐performance P(EC/EO) electrolyte is expected to be a candidate material for use in all‐solid‐state batteries.

  相似文献   


17.
The gel polymer electrolytes composed of ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate (BMImBF4) and the copolymer of acrylonitrile (AN), methyl methacrylate (MMA), poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) are synthesized and characterized by FT‐IR spectra, TGA, DSC, and AC impedance measurements. IR spectra show that there is an interaction between PEO side chains of the copolymer and imidazolium cations. TGA measurements indicate that the gel polymer electrolytes are stable until 120°C. By using the equivalent circuit proposed, the experimental data and the simulated data fit very well. The bulk resistance Rb is found to decrease with the increase in BMImBF4 content. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A series of well‐defined double hydrophilic graft copolymers containing poly(poly(ethylene glycol) methyl ether acrylate) (PPEGMEA) backbone and poly(2‐vinylpyridine) (P2VP) side chains were synthesized by successive single electron transfer living radical polymerization (SET‐LRP) and atom transfer radical polymerization (ATRP). The backbone was first prepared by SET‐LRP of poly(ethylene glycol) methyl ether acrylate (PEGMEA) macromonomer using CuBr/tris(2‐(dimethylamino)ethyl)amine as catalytic system. The obtained homopolymer then reacted with lithium diisopropylamide and 2‐chloropropionyl chloride at ?78 °C to afford PPEGMEA‐Cl macroinitiator. poly(poly(ethylene glycol) methyl ether acrylate)‐g‐poly(2‐vinylpyridine) double hydrophilic graft copolymers were finally synthesized by. ATRP of 2‐vinylpyridine initiated by PPEGMEA‐Cl macroinitiator at 25 °C using CuCl/hexamethyldiethylenetriamine as catalytic system via the grafting‐ from strategy. The molecular weights of both the backbone and the side chains were controllable and the molecular weight distributions kept relatively narrow (Mw/Mn ≤ 1.40). pH‐Responsive micellization behavior was investigated by 1H NMR, dynamic light scattering, and transmission electron microscopy and this kind of double hydrophilic graft copolymer aggregated to form micelles with P2VP‐core while pH of the aqueous solution was above 5.0. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
Stimuli‐responsive poly[(N‐isopropylacrylamide‐co‐maleic anhydride)‐g‐poly(ethylene oxide)]/poly(ethylene imine) macrobranched macrocomplexes were synthesized by (1) the radical copolymerization of N‐isopropylacrylamide and maleic anhydride with α,α′‐azobisisobutyronitrile as an initiator in 1,4‐dioxane at 65 °C under a nitrogen atmosphere, (2) the polyesterification (grafting) of prepared poly(N‐isopropylacrylamide‐co‐maleic anhydride) containing less than 20 mol % anhydride units with α‐hydroxy‐ω‐methoxy‐poly(ethylene oxide)s having different number‐average molecular weights (Mn = 4000, 10,000, or 20,000), and (3) the incorporation of macrobranched copolymers with poly(ethylene imine) (Mn = 60,000). The composition and structure of the synthesized copolymer systems were determined by Fourier transform infrared, 1H and 13C NMR spectroscopy, and chemical and elemental analyses. The important properties of the copolymer systems (e.g., the viscosity, thermal and pH sensitivities, and lower critical solution temperature behavior) changed with increases in the molecular weight, composition, and length of the macrobranched hydrophobic domains. These copolymers with reactive anhydride and carboxylic groups were used for the stabilization of penicillin G acylase (PGA). The conjugation of the enzyme with the copolymers significantly increased the thermal stability of PGA (three times at 45 °C and two times at 65 °C). © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1580–1593, 2003  相似文献   

20.
A series of copolymers of predominantly poly(ethylene oxide) (PEO) with mono-phenyl (HQ), biphenyl (BP) units, or both of them (HQ/BP) in the backbone were synthesized. The solid polymer electrolytes (SPEs) were prepared from three different types of copolymers (HQ-PEG, BP-PEG, and HQ/BP-PEG) employing lithium perchlorate (LiClO4) as a lithium salt at a fixed salt concentration of [EO]/[Li+]=8. Their ionic conductivities were investigated to exploit the structure–ionic conductivity relationships as a function of structural change in rigid phenyl units and chain length ratio between flexible PEO chain and rigid phenyl units. As more rigid phenyl units were incorporated in the backbone chain, the formation inter- and intra-molecular complex with LiClO4 became weaker and lower ionic conductivities were observed. And it was also found that higher ionic conductivity is obtained with increasing PEO chain length because inter- and intra-molecular dissociation power of PEO increases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号