首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Micrometer-sized, monodisperse, hollow polystyrene (PS)/poly(ethylene glycol dimethacrylate) (PEGDM) composite particles with a single hole in the shell were prepared by seeded polymerization using (ethylene glycol dimethacrylate/xylene)-swollen PS particles in the presence of sodium dodecyl sulfate (SDS). Single holes were observed at SDS concentrations above 3 mM, much lower than in the PS/polydivinylbenzene (PDVB) system previously reported (above 45 mM). Phase separation inside droplets occurred at lower conversion in the PEGDM system than the PDVB system. Phase separation in the droplet at the early stage of the polymerization is an important factor for the formation of the single hole in the shell. Part CCCXIII of the series “Studies on Suspension and Emulsion.”  相似文献   

2.
In this paper, hollow poly(styrene-co-divinylbenzene-co-methacrylic acid) microparticles possessing various morphologies were synthesized by a combination of seeded polymerization and SPG membrane emulsification. Three families of polystyrene (PS) microspheres with various molecular weights but similar diameters were fabricated by SPG membrane emulsification. These PS microspheres were used as seeds to investigate the effect of their molecular weight on the phase separation between the PS seeds and microgel-like networks formed during seeded polymerization and on the morphologies of the resultant particles. Our study revealed that three resultant microparticles possessed diameters of ca. 10?μm and hollow cavities. The shell thickness of the particles became thinner as M w increased from 3.5?×?104 to 28.0?×?104. The morphological evolution of the microparticles during seeded polymerization was monitored, and these results verified the influence of the molecular weight of the PS seeds on the phase separation behavior and hence the morphologies of the resultant particles.  相似文献   

3.
 Recently, the authors reported that micron-sized monodispersed cross-linked polymer particles having a single hollow in the inside were produced by seeded polymerization for the dispersion of (toluene/divinylbenzene)-swollen polystyrene (PS) particles prepared utilizing the dynamic swelling method which the authors had proposed. In this article, the particles at various conversions of the seeded polymerization were observed with an optical microscope in detail. From the obtained results, the formation mechanism of the hollow structure is suggested as follows. As seeded polymerization proceeds, poly-divinylbenzene (PDVB) molecules precipitated in the swollen particle are trapped near the interface and gradually pile at the inner surface, which results in a cross-linked PDVB shell. PS which dissolves in the swollen particles is repelled gradually to the inside. After the completion of the polymerization, toluene in the hollow evaporates by drying, and PS clings to the inner wall of the shell uniformly. Received: 14 February 1997 Accepted: 16 April 1997  相似文献   

4.
Suspension polymerizations for divinylbenzene (DVB)/ toluene droplets dissolving polystyrene (PS) having different end groups were carried out. Hollow polymer particles were not obtained with PS having polar sulfate end groups, which were prepared by emulsifier-free emulsion polymerization with potassium persulfate initiator. On the other hand, they were obtained with PS having low polarity isobutyronitrile end groups, which were prepared by solution polymerization with 2,2′-azobis(isobutyronitrile) initiator. The interfacial tensions between the water and xylene/toluene (1/1, w/w) mixture solution of PS having polar groups was smaller than that having low polarity groups. From these results, it is concluded that the preferential adsorption of PDVB molecules formed by the suspension polymerization at the interface of the droplets over PS molecules, which depended on the kind of the end groups, is one of the key factors for the formation of the hollow structure. Received: 5 September 2000 Accepted: 13 December 2000  相似文献   

5.
This work reports the morphology of two-phase latex particles prepared by semi-continuous seed emulsion polymerization of styrene in the presence of polar poly(methyl methacrylate), PMMA, seed particles, using different conditions of non-polar styrene feed rate, rate of initiation, seed particle concentration and temperature of polymerization.The expected latex particle morphology at thermodynamic equilibrium is an inverted core-shell structure where the non-polar polystyrene would form the core. However, depending on the set of process conditions used the morphology of the resulting two-phase particles varied from that of a pure core-shell structure, over intermediate structures in which a shell of PS surrounded a PMMA core containing an increasing number of PS phase domains, to a structure in which the entire PS phase was present as discrete PS phase domain, more or less evenly distributed in a matrix of PMMA.By the use of a caloirimetric reactor system the monomer concentration in the particles during the different polymerization experiments could be calculated by comparing the integral of the polymerization rate curve with the integral of the monomer feed rate. A comparison between particle morphology and the calculated concentration of plasticizing monomer in the polymerizing particles strongly suggested that the diffusivity of the entering oligo radicals determined by the difference between polymerization temperature and the glass transition temperature of the monomer-swollen core polymer is a key factor determining the morphology of two-phase particles prepared by semi-continuous seed emulsion polymerization.Two-phase particles with a true core-shell structure were obtained in experiments where the estimated glass transition temperature of the PMMA phase was only a few degrees below the polymerization temperature. The results show that such particles can be obtained under conditions of high as well as low styrene feed rates, provided that the rate of initiation is properly adjusted.  相似文献   

6.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

7.
Polystyrene/polypyrrole (PS/PPy) core–shell nanocomposite particles with uniform and tailored morphology have been successfully synthesized using the “naked” PS particulate substrate with the aid of a proposed strategy, the so-called swelling–diffusion–interfacial polymerization method. After initially forming pyrrole-swollen PS particles, diffusion of the monomer toward the aqueous phase was controlled through the addition of hydrochloric acid, eventually leading to its polymerization on the substrate particle surface. This process allows the nanocomposite particles to possess uniform and intact PPy overlayer and affords much more effective control over the structure and morphology of the resultant nanocomposites by simply changing the PS/pyrrole weight ratio or the addition amount of the doping acid. In particular, the nanocomposite particles with a thin, uniform, and intact PPy overlayer and their corresponding PPy hollow particles were obtained at a low addition amount of pyrrole. The resultant nanocomposite particles have been extensively characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and thermogravimetry.  相似文献   

8.
The formation mechanism of hollow micron-sized polystyrene (PS) particles having numerous dents on the surface, so-called cage-like particles, obtained from seeded dispersion polymerization (SDP) of 2-ethylhexyl methacrylate (EHMA) with low molecular weight (MW) PS particles stabilized by poly(vinyl alcohol) (PVA) in the presence of hexadecane droplets was investigated. It was found that association of poly(2-ethylhexyl methacrylate) (PEHMA)/hexadecane phases which occurs due to the instability of the obtained composite particles followed by a diffusion of PS ellipsoidal particles into each other is the main process responsible for the production of such unique morphology. Time course monitoring of the SDP showed that diffusion of hexadecane and/or PS and/or PEHMA phase into PS/PEHMA/hexadecane composite particles through PS shell which happens based on Ostwald ripening is the main phenomenon which results in the formation of the dents on the surface of final particles. Moreover, the experimental results revealed that in this reaction system, the polymerization develops in a faster manner rather than the SDP employing seed particles having higher MWs. Furthermore, it was observed that particles with different surface morphologies can be produced by using different hydrocarbons. The elimination of small particles which are produced in addition to the cage-like ones via decreasing the concentration of the stabilizer was another interesting finding of this research. The acquired results showed that unstable SDP is expected to be a new concept in polymerization-induced self-assembly (PISA) which employs instability of a dispersion for self-assembly of polymeric particles, and therefore, production of polymeric unique objects.  相似文献   

9.
In a previous study, it was found that monodisperse polystyrene (PSt) hollow particles can be prepared under special conditions by combining a Shirasu Porous Glass (SPG) emulsification technique and subsequent suspension polymerization process. The dispersed phase mainly containing St, hexadecane (HD), and initiator, was pressed through the uniform pores of a SPG membrane into the continuous phase to form uniform droplets. Then, the droplets were polymerized at 70°C. It was proposed that rapid phase separation between PSt and HD was a main reason responsible for the formation of hollow particle. Rapid phase separation confined the HD inside the droplets, it belonged to a non-equilibrium morphology. In this study, HD/St ratio was increased to a high value to confirm the above proposition by promoting rapid phase separation further between HD and PSt, to prevent monomer diffusion into aqueous phase, and to obtain hollow particle with a large hole.  相似文献   

10.
4 μm-sized monodispersed cross-linked polymer particles having hollow structure were produced as follows. First, 1.7 μm-sized monodispersed polystyrene (PS) seed particles produced by dispersion polymerization were dispersed in ethanol/water (7/3, w/w) solution in which divinylbenzene (DVB), benzoyl peroxide (BPO), poly(vinyl alcohol), and toluene was dissolved. The PS seed particles were swollen with DVB, toluene and BPO maintaining high monodispersity throughout the dynamic swelling process where water was slowly added continuously. And then, the seeded polymerization of the (toluene/DVB)-swollen PS particles was carried out.  相似文献   

11.
Poly(styrene-co-methacrylic acid) (PS-co-MAA) particles were synthesized via surfactant-free emulsion polymerization and then used as particulate emulsifiers for preparation of Pickering emulsions. Our results showed that adjusting the solution pH can tune the wettability of PS-co-MAA particles to stabilize either water-in-oil (W/O) or oil-in-water (O/W) Pickering emulsions. Stable W/O emulsions were obtained with PS-co-MAA particles at low pH values due to their better affinity to the dispersed oil phase. In contrast, increasing the pH value significantly changed the stabilizing behavior of the PS-co-MAA particles, leading to the phase inversion and formation of stable O/W emulsions. We found that the oil/water ratio had a significant influence on pH value of the phase inversion. It decreased with decreasing the oil/water ratio, and no phase inversion occurred when the styrene volume fraction reduced to 10 %. Additionally, macroporous polystyrene (PS) foam and PS microspheres were obtained via polymerization of Pickering high internal phase emulsion (Pickering HIPE) and O/W Pickering emulsion, respectively.  相似文献   

12.
Anisotropic polystyrene/poly(styrene-co-divinylbenzene) (PS/P(S-DVB)) protrusion particles with various morphologies such as eyeball-like, snowman-like, and raspberry-like were synthesized using a modified seeded polymerization method by dynamically controlling and stabilizing the phase separation. The effects of swelling agent, crosslinker, and monomer concentrations on the particle morphologies were studied. Using the PS/P(S-DVB) protrusion particles as templates, anisotropic silica (SiO2) hollow microspheres were fabricated facilely. The obtained anisotropic silica hollow spheres had a potential application in rapid waste removal and detoxification extraction with a very simple procedure.  相似文献   

13.
In this study, we describe a new strategy for producing narrowly dispersed functional colloidal particles stabilized by a nanocomposite with hydrophilic clay faces and hydrophobic polystyrene (PS) brushes on the edges. This method involves preparation of polymer brushes on the edges of clay layers and Pickering suspension polymerization of styrene in the presence of the nanocomposites. PS brushes on the edges of clay layers were prepared by atom transfer radical polymerization. X‐ray diffraction and thermogravimetric analysis results indicated that PS chains were grafted to the edges of clay platelets. Transmission electron microscope results showed that different morphologies of clay‐PS particles could be obtained in different solvents. In water, clay‐PS particles aggregated together, in which PS chains collapsed forming nanosized hydrophobic domains and hydrophilic clay faces stayed in aqueous phase. In toluene, clay‐PS particles formed face‐to‐face structure. Narrowly dispersed PS colloidal particles stabilized by clay‐PS were prepared by suspension polymerization. Because of the negatively charged clay particles on the surface, the zeta potential of the PS colloidal particles was negative. Positively charged poly(2‐vinyl pyridine) (P2VP) chains were adsorbed to the surface of PS colloidal particles in aqueous solution at a low pH value, and gold nanoparticles were prepared in P2VP brushes. Such colloidal particles may find important applications in a variety of fields including waterborne adhesives, paints, catalysis of chemical reactions, and protein separation. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1535–1543, 2009  相似文献   

14.
Polystyrene (PS) particles were prepared via Pickering emulsion polymerization using graphene oxide (GO) as the stabilizer. The results show that pH is an important factor in the stability of Pickering emulsions. The effects of two different phase initiators, the water phase initiator potassium persulfate and the oil phase initiator azobisisobutyronitrile, on the morphology of PS particles in Pickering emulsion polymerization had been investigated in detail. Wrinkled particles were prepared using the water phase initiator, and spherical particles were prepared using the oil phase initiator. In addition, hexadecane was used as the auxiliary stabilizer in the polymerization, which narrowed the diameter distribution of the PS spheres, and the hollow PS spheres were fabricated. The size of the GO particles also influenced the final morphology of the particles. Nano-sized polymer particles were grafted onto the surface of micro-sized GO. Small GO particles were suitable for Pickering emulsion polymerization to prepare the composite particles. The thermogravimetric analysis of the prepared particles confirmed that they were PS/GO composite particles, which could have a wide range of potential applications, such as in catalysts, sensors, environmental remediation, and energy storage.  相似文献   

15.
Submicrometer fluorescent polystyrene (PS) particles have been synthesized via miniemulsion polymerization using CdSe/ZnS core-shell quantum dots (QDs). The influence of QD concentration, QD coating (either trioctylphosphine oxide (TOPO)-coated or vinyl-functionalized), and surfactant concentration on the polymerization kinetics and the photoluminescence properties of the prepared particles has been analyzed. Polymerization kinetics were not altered by the presence of QDs, whatever their surface coating. Latexes exhibited particle sizes ranging from 100 to 350 nm, depending on surfactant concentration, and a narrow particle size distribution was obtained in all cases. The fluorescence signal of the particles increased with the number of incorporated TOPO-coated QDs. The slight red shift of the emission maximum was correlated with phase separation between PS and QDs, which occurred during the polymerization, locating the QDs in the vicinity of the particle/water interface. QD-tagged particles displayed higher fluorescence intensity with TOPO-coated QDs compared to those with the vinyl moiety. The obtained fluorescent particles open up new opportunities for a variety of applications in biotechnology.  相似文献   

16.
Production of hollow polymer particles by suspension polymerization   总被引:4,自引:0,他引:4  
 Polymer particles having single hollow in the inside were successfully prepared by suspension polymerization for divinylbenzene/ toluene droplets dissolving polystyrene (PS) in an aqueous solution of poly(vinyl alcohol). Such a hollow polymer particle was not obtained without PS. The hollow structure was affected by the molecular weight and the concentration of PS. Received: 3 December 1997 Accepted: 27 March 1998  相似文献   

17.
Hollow micron-sized poly(styrene-co-divinylbenzene) particles were produced in seeded emulsions in the presence of swelling solvents. The size and morphology of the resulting polymer particles can be altered by varying swelling solvent in seeded polymerization at elevated temperature. The effects of swelling agents, including hydrophobic solvents, hydrophilic solvents and solvent mixtures, on the microstructure of particles were investigated. The formation of hollow poly(styrene-co-divinylbenzene) particles depended significantly on a fast and effective phase separation between the cross-linked shell and the swollen core, that occurred only in the presence of an appropriate swelling solvent.  相似文献   

18.
采用在苯乙烯 (St)悬浮聚合过程中滴加甲基丙烯酸甲酯 (MMA)乳液聚合组分的悬浮 乳液复合聚合方法 ,制备大粒径聚苯乙烯 聚甲基丙烯酸甲酯 (PS PMMA)复合粒子 .研究聚合物粒径分布和颗粒形态的变化发现 ,在St悬浮反应中期滴加MMA乳液聚合组分后 ,聚合体系逐渐由悬浮粒子与乳胶粒子并存向形成单峰分布复合粒子转变 ,最终形成核 壳结构完整的大粒径PS PMMA复合粒子 ;在St悬浮反应初期滴加MMA乳液聚合组分 ,St与MMA一起分散成更小液滴 ,反应后期凝并成非核 壳结构复合粒子 ;在St悬浮反应后期滴加MMA乳液聚合组分 ,PMMA乳胶粒子与PS悬浮粒子基本独立存在 .根据以上结果 ,提出了St MMA悬浮 乳液复合聚合的成粒机理 .  相似文献   

19.
The kinetics of dispersion copolymerization of methacryloyl-terminated poly(oxyethylene) (PEO-MA) and p-vinylbenzyl-terminated (PEO-St) polyoxyethylene macromonomers and styrene (St), initiated by a water- and/or oil-soluble initiator, was investigated using conventional gravimetric and NMR methods at 60°C. The batch copolymerizations in the water/ethanol continuous phase were conducted to high conversion. The rate of polymerization was described by the curve with a maximum at very low conversion. The initial rate of polymerization and the number-average molecular weight were found to decrease with increasing [PEO-MA], and the decrease was more pronounced in the range of a high macromonomer concentration. The rate per particle (at ca. 20% conversion) was found to be proportional to the −1.55th, the particle size to the −0.92nd, and the number of particles (at final conversion) to the 3.2nd power of [PEO-MA], respectively. At the beginning of polymerization the continuous phase is the main reaction locus. As the polymerization advances, the reaction locus is shifted from the continuous phase to the polymer particles. The transform of the reaction loci from the continuous phase to the polymer particles increases the rate of polymerization and the polymer molecular weights. The increase of the weight ratio PEO-MA/St favors the formation of monodisperse polymer particles, the colloidal stability of dispersion, and the formation of a larger number of polymer particles. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3131–3139, 1997  相似文献   

20.
Polystyrene (PS) nanocomposite particles with high titania content are prepared by Pickering emulsion polymerization. A self‐made titania hydrosol modified by an anionic monomer sodium styrene sulfonate (NaSS) is used as a stabilizer and photocatalyst. The stability of the emulsion system is greatly improved by the electrostatic interaction between negatively charged NaSS and positively charged titania nanoparticles. The nanocomposite spheres with the diameter of around 120 nm are highly charged, indicating titania‐rich surfaces of latex particles. It is also proven by the field‐emission transmission electron microscope and field‐emission scanning electron microscope images. The well‐defined core‐shell structure of the obtained PS/titania composite particles is confirmed by the formation of fragile hollow titania nanospheres after thermogravimetric analysis tests. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5728–5736, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号