首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A phosphorized polyaniline (PANI) doped with phytic acid (PhA) was synthesized by the chemical oxide method with PhA as a dopant and applied to improve the anticorrosion properties of magnesium-lithium (Mg-Li) alloys after blending with eco-friendly silane sol. The chemical structures and morphologies of PANI samples were evaluated by FTIR spectroscopy, UV-Vis-NIR spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and scanning electron microscopy (SEM). All characterizations indicate that the as-synthesized phosphorized PANI (PANI-PhA) exists in doped emeraldine salt state with net-like structures crosslinked by phosphate carboxyl groups. The conductivity and thermostability of PANI-PhA were better than those of PANI doped with phosphoric acid (PANI-H3PO4) and undoped PANI. The anticorrosion properties of PANI/silane sol composite coatings for Mg-Li alloy were tested by electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization measurements. The results prove that the anticorrosion ability of PANI-PhA is the best among the three PANI samples, as shown by a low corrosion current (1.28 × 10?7 A·cm?2) and high impedance (5.62 × 106 Ω·cm2). The possible anticorrosion mechanism was proposed based on procedure analysis.  相似文献   

2.
The dielectric and mechanical properties of hybrid polymer nanocomposites of polystyrene/polyaniline/carbon nanotubes coated with polyaniline(PCNTs) have been investigated using impedance analyzer and extensometer. The blends of PS/PANI formed the heterogeneous phase separated morphology in which PCNTs are dispersed uniformly. The incorporation of a small amount of PCNTs into the blend of PS/PANI has remarkably increased the dielectric properties. Similarly, the AC conductivity of PS/PANI is also increased five orders of magnitude from 1.6 × 10~(-10) to 2.0 × 10~(-5) S·cm~(-1) in the hybrid nanocomposites. Such behavior of hybrid nanocomposites is owing to the interfacial polarization occurring due to the presence of multicomponent domains with varying conductivity character of the phases from insulative PS to poor conductor PANI to highly conductive CNTs. Meanwhile, the tensile modulus and tensile strength are also enhanced significantly up to 55% and 160%, respectively, without much loss of ductility for three phase hybrid nanocomposites as compared to the neat PS. Thereby, the hybrid nanocomposites of PS/PANI/_P CNTs become stiffer, stronger and tougher as compared to the neat systems.  相似文献   

3.
The homogeneous polyaniline–graphene oxide (PANI-GO) nanocomposites were facilely assembled with a redox system in which cumene hydroperoxide (CHP) and iron dichloride (FeCl2) acted as oxidant and reductant, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images showed that PANI scales coated uniformly on the surface of GO sheets owing to the synergistic effect between the PANI and GO. The obtained PANI-GO nanocomposites exhibited improved electrochemical performance as an electrode material for supercapacitors compared with the pure PANI. The specific capacitance of the PANI-GO nanocomposites was high up to 308.3 F g?1, much higher than that of the pure PANI with specific capacitance of 150 F g?1 at a current density of 1 A g?1 in 2 M H2SO4 electrolyte. The Raman and XPS results illustrated that enhanced electrochemical performance might be attributed to the π-π conjugation between the PANI and GO sheets.  相似文献   

4.
In direct methanol fuel cells (DMFC), methanol crossover is a major issue which has reduced the performance of polymer electrolyte membrane (PEM) for energy generation. In this study, graphene oxide (GO) and conductive polyaniline decorated GO (PANI-GO) were used as additives in fabrication of sulfonated poly(ether ether ketone) (SPEEK) nanocomposite PEM membrane to reduce methanol crossover. PANI-GO was synthesized by in situ polymerization method and the formation of PANI coated GO nanostructures was confirmed by surface morphology and crystallinity analysis. The membrane morphology and topography analysis confirmed that GO and PANI-GO were well dispersed on the surface of SPEEK membrane. 0.1 wt% PANI-GO modified SPEEK nanocomposite membrane exhibited the highest water uptake and ion exchange capacity of 40% and 1.74 meq g?1, respectively. The oxidative stability of the nanocomposite membranes also improved. Lower methanol permeability of 4.33 × 10?7 cm?2S?1 was noticed for 0.1 wt% PANI-GO modified SPEEK membrane. PANI-GO modified SPEEK membrane enhanced the proton conductivity, which was due to the existence of acidic and hydrophilic group present in PANI and GO. PANI-GO modified SPEEK membrane held higher selectivity of 1.94 × 104 S cm?3 s?1. Overall, these studies revealed that PANI-GO modified SPEEK membrane is a potential material for DMFC applications.  相似文献   

5.
Abstract

Chemically functionalized graphene oxide [multi-amino functionalized graphene oxide (MAGO)] was achieved by building covalent bonds between graphene oxide (GO) and a small molecule containing benzene structure and multi-amino groups. Fourier transform infrared, X-ray diffraction, X-ray photo electron spectroscopy and TEM-EDX results certified that the molecule was successfully grafted onto GO nanosheets. Subsequently, functionalized GO was incorporated into waterborne epoxy (EP) coating through ball-milling method. This molecular design can significantly improve the dispersion of MAGO in EP matrix, as well as the compatibility and interaction between MAGO and EP. Compared with GO/EP, the water absorption of MAGO/EP decreased from 4.38 to 2.59%, the adhesion strength of MAGO/EP increased from 4.72 to 6.32?MPa after immersion of 40?days in 3.5% NaCl solution. Incorporation of 1?wt% of MAGO into EP matrix prominently improved the long-term corrosion resistance. The impedance modulus of GO/EP coating decreased by four orders after 40 days immersion, while that of MAGO/EP coating only decreased by one order. The impedance modulus was still 1.47?×?108 Ω cm2, and two-time constant wasn’t detected for MAGO/EP coating. This research developed a novel green anticorrosion coating with enhanced durability for metal protection.  相似文献   

6.
Graphene oxide (GO)–polyaniline (PANI) composite is synthesized by in situ polymerization of aniline in the presence of GO as oxidant, resulting in highly crystalline and conductive composite. Fourier transform infrared spectrum confirms aniline polymerization in the presence of GO without using conventional oxidants. Scanning electron microscopic images show the formation of PANI nanofibers attached to GO sheets. X‐ray diffraction (XRD) patterns indicate the presence of highly crystalline PANI. The sharp peaks in XRD pattern suggest GO sheets not only play an important role in the polymerization of aniline but also in inducing highly crystalline phase of PANI in the final composite. Electrical conductivity of doped GO–PANI composite is 582.73 S m?1, compared with 20.3 S m?1 for GO–PANI obtained by ammonium persulfate assisted polymerization. The higher conductivity appears to be the result of higher crystallinity and/or chemical grafting of PANI to GO, which creates common conjugated paths between GO and PANI. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1545–1554  相似文献   

7.
In the present work effect of 90 MeV O7+ ions with five different fluences on poly(ethylene oxide) (PEO)/Na+-montmorillonite (MMT) nanocomposites has been investigated. PEO/MMT nanocomposites were synthesized by solution intercalation technique. With the increase in irradiation fluence, gallery spacing of MMT increases in the composite and an exfoliated nanostructure is obtained at the fluence of 5?×?1012 ions/cm2 as revealed by X-ray diffraction results. Highest room temperature ionic conductivity of 4.2?×?10?6?S?cm?1 was found for the fluence 5?×?1012 ions/cm2, while the conductivity for unirradiated polymer electrolyte was found to be 7.5?×?10-8?S?cm?1. The increase in intercalation of PEO chains inside the galleries of MMT results in the increase in interaction between Na+ cation and oxygen heteroatom leading to the increase in ionic conductivity of the composites. Surface morphology and interactions among the various constituents in the nanocomposites at different fluence have been examined by scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The appearance of peak for each fluence in the loss tangent suggests the presence of relaxing dipoles in the polymer nanocomposite electrolyte films. With the increase in ion fluence the peak shifts towards higher frequency side, suggesting decrease in the relaxation time.  相似文献   

8.
In this work, a simple and novel electrochemical biosensor based on a glassy carbon electrode (GCE) modified with graphene oxide nanosheets (GO) was developed for detection of DNA sequences. The morphology of prepared nanoplatform was investigated by scanning electron microscopy, infrared (FTIR) and UV/Vis absorption spectra. The fabrication processes of electrochemical biosensor were characterized with cyclic voltammetry and electrochemical impedance spectroscopy (EIS) in an aqueous solution. The optimization of experimental conditions such as immobilization of the probe BRCA1 and its hybridization with the complementary DNA was performed. Due to unique properties of graphene oxide nanosheets such as large surface area and high conductivity, a wide liner range of 1.0 × 10?17–1.0 × 10?9 M and detection limit of 3.3 × 10?18 M were obtained for detection of BRCA1 5382 mutation by EIS technique. Under the optimum conditions, the proposed biosensor (ssDNA/GO/GCE) revealed suitable selectivity for discriminating the complementary sequences from non-complementary sequences, so it can be applicable for detection of breast cancer.  相似文献   

9.
We have reported the semi conducting and photoelectrochemical properties of SrWO4 prepared by chemical route. The phase purity is confirmed by X-ray diffraction and the oxide is characterized by scanning electron microscopy, diffuse reflectance, and electrochemical impedance spectroscopy. SrWO4 crystallizes in the scheelite structure with an average crystallite size of 378 ± 6 nm. The Raman spectrum gives an intense peak at 920 cm?1 assigned to A g mode while the infrared analysis confirms the hexagonal coordination of tungsten. The UV-visible spectroscopy shows an indirect optical transition at 2.60 eV. SrWO4 exhibits n-type conduction by oxygen deficiency, confirmed by the chrono-amperometry and the intensity potential J(E) curve shows a small hysteresis. The Mott-Schottky plot gives electrons density of 5.72 × 1018 cm?3 and a flat band potential of 0.27 VSCE, indicating that the conduction band derives mainly from W6+: 6s orbital. The electrochemical impedance spectroscopy (EIS), measured in the range (1–105 Hz), shows the predominance of the bulk contribution with a dark impedance of 38 kΩ cm2. As application, the ibuprofen is degraded by electrocatalysis on SrWO4 with a conversion rate of 42%. An improvement up to 77% has been obtained by electrophotocatalysis under UV light; the conversion follows a first order kinetic with a rate constant of 2.32 × 10?4 min?1.  相似文献   

10.
The effect of the dispersion of zinc oxide (ZnO) nanoparticles in the zinc ion conducting gel polymer electrolyte is studied. Changes in the morphology/structure of the gel polymer electrolyte with the introduction of ZnO particles are distinctly observed using X-ray diffraction and scanning electron microscopy. The nanocomposites offer ionic conductivity values of >10?3 S cm?1 with good thermal and electrochemical stabilities. The variation of ionic conductivity with temperature follows the Vogel–Tamman–Fulcher behavior. AC impedance spectroscopy, cyclic voltammetry, and transport number measurements have confirmed Zn2+ ion conduction in the gel nanocomposites. An electrochemical stability window from ?2.25 to 2.25 V was obtained from voltammetric studies of nanocomposite films. The cationic (i.e., Zn2+ ion) transport number (t +) has been found to be significantly enhanced up to a maximum of 0.55 for the dispersion of 10 wt.% ZnO nanoparticles, indicating substantial enhancement in Zn2+ ion conductivity. The gel polymer electrolyte nanocomposite films with enhanced Zn2+ ion conductivity are useful as separators and electrolytes in Zn rechargeable batteries and other electrochemical applications.  相似文献   

11.
C60/polyaniline (PANI) nanocomposites have been synthesized by the oxidative polymerization of aniline with ammonium peroxydisulfate in the presence of C60 by using an interfacial reaction. When compared with the pure PANI nanofibers from the similar process, the diameter of the obtained C60/PANI nanofibers was increased because of the encapsulation of C60 into PANI during aniline polymerization, which resulted from the charge‐transfer interactions between C60 and aniline fragment in PANI. In addition, the resulting C60/PANI nanocomposites synthesized from the low initial C60/aniline molar ratio (less than 1:25) showed the homogenous morphology composed of fiber network structures, which has an electrical conductivity as high as 1.1 × 10?4 S/cm. However, the C60/PANI nanocomposites from the higher initial C60/aniline molar ratio (more than 1:15) showed the nonuniformly distributed morphology, and the electrical conductivity was decreased to 3.5 × 10?5 S/cm. Moreover, the C60/PANI nanocomposites from the interfacial reaction showed a higher value of electrical conductivity than the mechanically mixed C60/PANI blends with the same C60 content, because of the more evenly distributed microstructures. FTIR, UV–vis, and CV data confirmed the presence of C60 and the significant charge‐transfer interactions in the resultant nanocomposites, which was responsible for the morphology development of the C60/PANI and the variation of the electrical conductivity. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

12.
The present endeavor focuses on the unusual interactions between polyaniline and graphene oxide (PANi–GO) which radically affects the properties of nanocomposites as it is an emerging material for many potential applications. A series of nanocomposites have been synthesized by varying the weight percentage of highly nonconducting GO with respect to aniline which exhibit superior properties in terms of shelf life, processability and conductivity due to the synergistic effect of GO and PANi. A comparison of the resistances of samples reveal that though as‐synthesized GO is insulating (80 MΩ), when added to PANi (283 kΩ) in small amounts yields conducting composites (50–280 Ω). Up to 5 weight % concentration, GO renders conductivity to the composite probably by increasing the doping level of PANi. Nonetheless, no further increase in conductivity observed on addition of more than 5 wt% GO in the composite has dictated us to unravel the structure property relationship between PANi and GO, where GO facilitates the formation of partially reduced phase of PANi, thereby restricting the electronic transport. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3778–3786  相似文献   

13.
Electrical properties of multi-walled carbon nanotubes (MWNTs)/hybrid-glass nanocomposites prepared by the fast-sol–gel reaction were investigated in light of percolation theory. A good correlation was found between the experimental results and the theory. We obtained a percolation threshold ? c  = 0.22 wt%, and a critical exponent of t = 1.73. These values are reported for the first time for a silica-based system. The highest conductivity measured on the MWNT/hybrid-glass nanocomposites was σ ≈ 10?3(Ω cm)?1 for 2 wt% carbon nanotube (CNT) loading. The electrical conductivity was at least 12 orders of magnitude higher than that of pure silica. Electrostatic force microscopy and conductive-mode atomic force microscopy studies demonstrated conductivity at the micro-level, which was attributed to the CNT dispersed in the matrix. It appears that the dispersion in our MWNT/hybrid-glass system yields a particularly low percolation threshold compared with that of a MWNT/silica-glass system. Materials with electrical conductivities described in this work can be exploited for anti-static coating.  相似文献   

14.
Abstract

Graphene oxide (GO) embedded superporous poly(acrylamide) (P(AAm)) cryogel composites (P(AAm)-GO) were prepared and used as conductive sensor materials. For this goal, the GOs flakes within superporous P(AAm) cryogels were reduced in-situ employing hydriodic acid (HI), hydrazine (N2H4), and sodium borohydride (NaBH4) as reducing agents. Amongst all reduced agents\the highest conductivity was observed for HI reduced P(AAm)-GO (P(AAm)-rGO) with 1.7?×?10?6±9.7?×?10?8 S.cm?1. Then again, this P(AAm)-rGO was used for in-situ synthesis of conductive polymers, poly(aniline) (PANI), and poly(pyrrole) (PPy) by using oxidative polymerization technique. The SEM, FT-IR, TGA and conductivity measurements were done for the characterization of prepared cryogel composites. It was found that the conductivity of P(AAm)-rGO increased 70- and 1400-fold with the presence of PANI and PPy, respectively. Furthermore, potential sensor application of P(AAm)-rGO/conductive polymers were tested against herbicides such as paraquat, glyphosphate (G), and a phenolic compound, 4-nitrophenol (4-NP), and some dyes such as methylene blue (MB), methyl orange (MO). Conductivity of P(AAm)-rGO/PANI decreased 5.3 -fold upon reacting with 10?mL 50?ppm G solution. The sensitivity and effect of G amounts were also tested for P(AAm)-rGO/PANI cryogel composite.  相似文献   

15.
Polyaniline (PANI)/organoclay exfoliated nanocomposites containing different organoclay contents (14–50 wt%) were prepared. PANI emeraldine base (EB) and oligomeric PANI (o‐PANI) were intercalated into montmorillonite (MMT) modified by four types of polyoxyalkylene diamine or triamine (organoclay) using N‐methyl pyrolidinone (NMP) as a solvent in the presence of 0.1 M HCl. o‐PANI and EB have been synthesized by oxidative polymerization of aniline using ammonium peroxydisulfate (APS). Infrared absorption spectra (IR) confirm the electrostatic interaction between negatively charged surface of MMT and positively charged sites in PANI. X‐ray diffraction (XRD) studies disclosed that the d001 spacing between interlamellar surface disappeared at low content of the organoclay. The morphology of these materials was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrical conductivities of the PANI‐organoclay and o‐PANI‐organoclay nanocomposites were 1.5 × 10?3–2 × 10?4 and 9.5 × 10?7–1.8 × 10?9 S/cm, respectively depending on the ratio of PANI. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
The present investigation deals with electrochemical double layer capacitors (EDLCs) made up of ionic liquid (IL)-based gel polymer electrolytes with chemically treated activated charcoal electrodes. The gel polymer electrolyte comprising of poly(vinylidine fluoride-co-hexafluropropylene) (PVdF-HFP)–1-ethyl-2,3-dimethyl-imidazolium-tetrafluroborate [EDiMIM][BF4]–propylene carbonate (PC)–magnesium perchlorate (Mg(ClO4)2) exhibits the highest ionic conductivity of ~8.4?×?10?3?S?cm?1 at room temperature (~20 °C), showing good mechanical and dimensional stability, suitable for their application in EDLCs. Activation of charcoal was done by impregnation method using potassium hydroxide (KOH) as activating agent. Brunauer–Emmett–Teller (BET) studies reveal that the effective surface area of treated activated charcoal powder (1,515 m2?g?1) increases by more than double-fold compared to the untreated one (721 m2?g?1). Performance of EDLCs has been tested using cyclic voltammetry, impedance spectroscopy, and charge–discharge techniques. Analysis shows that chemically treated activated charcoal electrodes have almost triple times more capacitance values as compared to the untreated one.  相似文献   

17.
Graphene oxide (GO) nanoparticles were synthesized by modified Hummers method. The synthesized GO nanoparticles were incorporated in polyvinyl alcohol/polyvinyl pyrrolidone (PVA/PVP) blend polymers for the preparation of nanocomposite polymer films by solution cast technique. Different characterizations such as XRD, UV–Vis and FTIR were carried-out on to the prepared nanocomposite polymer films. The thermal analysis of the films was studied by DSC. The morphology of PVA/PVP:GO polymer films confirms GO was exfoliated within the PVA/PVP matrix and also reveals the heterogeneous phase of nanocomposite polymer electrolyte systems. From the conductivity studies the highest conductivity of PVA/PVP: GO (0.45: 0.3) was found to be 8.05 × 10–4 S/cm at room temperature. Solid state battery has been fabricated with the configuration of Mg+/(PVA/PVP:GO)/(I2 + C + electrolyte) and its cell parameters were calculated for a constant load of 100 kΩ.  相似文献   

18.
Proton conductivities of layered solid electrolytes can be improved by minimizing strain along the conduction path. It is shown that the conductivities (σ) of multilayer graphene oxide (GO) films (assembled by the drop‐cast method) are larger than those of single‐layer GO (prepared by either the drop‐cast or the Langmuir‐Blodgett (LB) method). At 60 % relative humidity (RH), the σ value increases from 1×10?6 S cm?1 in single‐layer GO to 1×10?4 and 4×10?4 S cm?1 for 60 and 200 nm thick multilayer films, respectively. A sudden decrease in conductivity was observed for with ethylenediamine (EDA) modified GO (enGO), which is due to the blocking of epoxy groups. This experiment confirmed that the epoxide groups are the major contributor to the efficient proton transport. Because of a gradual improvement of the conduction path and an increase in the water content, σ values increase with the thickness of the multilayer films. The reported methods might be applicable to the optimization of the proton conductivity in other layered solid electrolytes.  相似文献   

19.
La4Ni3O10 oxide was synthesized as a cathode material for intermediate-temperature solid oxide fuel cells by a facile sol–gel method using a nonionic surfactant (EO)106(PO)70(EO)106 tri-block copolymer (F127) as the chelating agent. The crystal structure, electrical conductivity, and electrochemical properties of La4Ni3O10 were investigated by X-ray diffraction, DC four-probe method, electrochemical impedance spectra, and I–V measurements. The La4Ni3O10 cathode showed a significantly low polarization resistance (0.26 Ω cm2) and cathodic overpotential value (0.037 V at the current density of 0.1 A cm?2) at 750 °C. The results measured suggest that the diffusion process was the rate-limiting step for the oxygen reduction reaction. The La4Ni3O10 cathode revealed a high exchange current density value of 62.4 mA cm?2 at 750 °C. Furthermore, an anode-supported single cell with La4Ni3O10 cathode was fabricated and tested from 650 to 800 °C with humidified hydrogen (~3 vol% H2O) as the fuel and the static air as the oxidant. The maximum power density of 900 mW cm?2 was achieved at 750 °C.  相似文献   

20.
In this study, novel poly(imide-ethylene glycol) (PIEG) was prepared via polycondensation of ethylenediaminetetraacetic dianhydride, 4-aminophenyl sulfone, and poly(ethylene glycol) bis(amine). Later, thermally stable and mechanically robust undoped and acid-doped proton exchange membranes were prepared using the graphene oxide (GO) nanofiller. Field emission scanning electron microscope revealed a unique hexagonal imprinted morphology of the fractured surface. Increasing the GO content from 1 to 5 wt% increased tensile strength (59.7–65.9 MPa) and the modulus (20.3–23.9 GPa) of the undoped PIEG/GO series. Thermal properties of the undoped PIEG/GO 1–5 membranes were also higher, i.e., T10 = 438–487°C. However, dop-PIEG/GO 1–5 membranes have a higher ion exchange capacity (IEC) of 2.4–2.9 mmol/g and proton conductivity 1.8–2.7 S cm?1 (94% RH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号