首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Development of a novel modified electrode for electrocatalytic oxidation of methanol in order to decrease overvoltage is importance. In this paper, carbon paste electrode (CPE) was modified by ZSM-5 nanozeolite. The average diameter of used nanozeolite was 97 nm. Ni2+ ions were incorporated to the nanozeolite by immersion of the modified electrode in a 0.1 M nickel chloride solution. Then, electrochemical studies of this electrode were performed by using cyclic voltammetry(CV) in alkaline medium. This modified electrode was used as an anode for the electrocatalytic oxidation of methanol in 0.1 M of NaOH solution. The obtained data demonstrated that ZSM-5 nanozeolite at the surface of CPE improves catalytic efficiency of the dispersed nickel ions toward methanol oxidation. The values of electron transfer coefficient, charge-transfer rate constant, and the electrode surface coverage are obtained 0.61, 0.2342 s?1, and 4.33 × 10?8 mol cm?2, respectively. Also, the mean value of catalytic rate constant between the methanol and redox sites of electrode and diffusion coefficient were found to be 2.54 × 104 cm3 mol?1 s?1 and 1.85 × 10?8 cm2 s?1, respectively. Obtained results from both CV and chronoamperometric techniques indicated that the electrode reaction is a diffusion-controlled process.  相似文献   

2.
The present study deals with the synthesis of nanostructured silicalite-1 membranes on porous α-Al2O3 supports by a hydrothermal method. Different parameters including the synthesis conditions (temperature and alkalinity) and operating conditions (temperature and pressure) were investigated. The membranes were characterized by X-ray diffraction and scanning electron microscopy techniques. The optimum synthesis temperature and alkalinity were determined to be 160 °C and pH = 11, respectively. The permeability of CO2 and CH4 through the optimized membrane was determined by the pressure drop method. The results revealed that the main effective separation mechanism was adsorption. The permeation of CO2 and CH4 declined with increasing temperature, whereas high feed pressures enhanced the single gas flux. The CO2 and CH4 permeability values at 30 °C and 2 bar were 1.62 × 10?7 and 2.07 × 10?7 mol m?2 s?1 Pa?1, respectively. Furthermore, the response surface methodology analysis confirmed the significance of all the variables and the proposed model. Excellent correlation between the experimental and predicted data (R2 = 0.99) was obtained, confirming that response surface methodology is a powerful tool for modeling nanostructured silicalite-1 membrane processes.  相似文献   

3.
The fabrication and electrochemical response characteristics of four novel potentiometric sensors for determination of pyrilamine maleate (PyraH) were described. The sensors include polymeric membrane electrodes (PME1, PME2) and carbon paste electrodes (CPE1, CPE2). The fabricated sensors were based on the ion-pair of pyrilamine with sodium tetraphenylborate (NaTPB) and ammonium reineckate (NH4RN) using dibutyl phthalate (DBP) as plasticizing solvent. The sensors showed linear, stable and near-Nernstian slopes of 56.4 ± 0.4, 54.2 ± 0.2, 58.8 ± 0.3 and 57.9 ± 0.4 mV decade?1 at 25 ± 0.1 °C and detection limits of 2.0 × 10?5, 1.8 × 10?5, 1.0 × 10?5 and 9.5 × 10?6 mol L?1 for PME1, PME2, CPE1 and CPE2 sensors, respectively. The response time was less than 10 and 8 s for polymeric membrane and carbon paste sensors. The proposed sensors displayed good selectivity for pyrilamine with respect to a number of common inorganic and organic species. The thermal temperature coefficients of the investigated sensors were 0.9508, 0.7012, 0.9450 and 0.6497 mV °C?1. Modified carbon paste sensors showed lower detection limits, higher thermal stability and faster response time than those of polymeric membrane sensors. The proposed sensors displayed useful analytical characteristics for determination of pyrilamine in pharmaceutical preparation and biological fluids (Human urine and plasma).  相似文献   

4.
A comparison of polymeric and ceramic membranes in the ultrafiltration process was studied and presented. This study was conducted on the separation of cadmium(II) ions, with particular reference to parameters such as hydrodynamic permeability coefficient, membrane fouling, amount of surfactant in the permeate, efficiency, and effectiveness of the process. The effect of ionic (SDS) and non-ionic (Rofam 10) surfactants or their mixture was investigated. The hydrodynamic permeability coefficient of the ceramic membrane was found to be much lower in comparison to those of the polymeric ones (1.69 × 10?7 m3 h?1 m?2 Pa?1, 5.66 × 10?7 m3 h?1 m?2 Pa?1, and 9.26 × 10?7 m3 h?1 m?2 Pa?1 for ceramic, CA, and PVDF, respectively). However, filtration of the surfactants solutions did not cause permanent blocking of pores and the surface of the ceramic membrane in contrast to the polymeric ones. No significant differences in surfactants permeation through the membranes tested were observed. Concentration of the surfactant in the permeate was lower than 1 CMC for the Rofam 10 solution and exceeded the CMC by about 40 % for the SDS solution. Better separation properties of polymer membranes for the separation of cadmium(II) ions from micellar systems were identified.  相似文献   

5.
The time required for thermalization of hot electrons in liquid argon, krypton and xenon increases with decreasing density to a minimum value of ≈ 7 ns at a density of ≈ 1.2 × 1022 cm?3. Previous data for the solids are found to lie an extrapolations of the liquid-phase density dependence.  相似文献   

6.
Seven commercially sourced acetylacetonate salts were investigated in deep eutectic solvents (DESs that were prepared from ethylene glycol and trifluoroacetamide hydrogen bond donors) by cyclic voltammetry, to identify electrolytes suitable for future applications in electrochemical energy storage devices. Although the solubilities are low and on the order of 0.02 mol·L?1 for the most soluble salts, some were found to display encouraging quasi-reversible electrochemical kinetics. For instance, the diffusion coefficients of copper(II) acetylacetonate and iron(III) acetylacetonate in the trifluoroacetamide based DES are 1.14 × 10?8 and 5.12 × 10?9 cm2·s?1, which yields rate constants of 3.16 × 10?3 and 8.43 × 10?6 cm·s?1, respectively. These results are better than those obtained with the DESs prepared from ethylene glycol. The poor kinetics of the iron(III) acetylacetonate system was possibly due to the hygroscopic nature of the DESs that resulted in a continuous build-up of moisture in the system in spite of the maintenance of an inert atmosphere by means of a plastic glove bag. Further work is thus envisaged in an inert dry box that could lead to H-type glass cell charge/discharge experiments in the future.  相似文献   

7.
《Analytical letters》2012,45(15):2444-2459
Abstract

Polymeric membrane electrodes (PMEs) and coated graphite electrodes (CGEs) containing 1,3,4-trisubstituted-2-azetidinone derivatives as ion carriers are reported here for bismuth(III) ion selectivity. These electrodes exhibited Nernstian response for Bi3+ ions over a wide concentration range (5.0 × 10?7 M to 1.0 × 10?1 M for CGE) with a lower detection limit of 3.98 × 10?7 M (for CGE) and wide pH range (1.3–5.0). Compared to polymeric membrane electrode, the coated graphite electrode has shown better selectivity for Bi3+ ions with respect to common metal ions. Proposed electrodes have been used for the estimation of Bi3+ ions in pharmaceutical and glass samples.  相似文献   

8.
In order to improve the selectivity and the stability and the stability for gas permeation of poly (1-trimethylsilyl-1-propyne) (PTMSP) membrane, it was chemically modified by grafting polydimethylsiloxane (PDMS) chains. The graft copolymers were synthesized by four different methods via metallation of PTMSP with n-butyllithium. PDMS content of the graft co-polymers was controlled in the range of 4–92 mol %. Very tough, thin membranes could be prepared from these graft copolymers using a solvent casting method. Thermal property and gas permeability of the copolymer membranes thus obtained were evaluated. These membranes were relatively thermally stable, and the softening points were over about 150°C. Oxygen permeability coefficients Po2 and selectivity Po2/PN2 of PTMSP/PDMS graft copolymers depended on the PDMS content, the former was in the range of 1 X 10?8 to 2 × 10?7 cm3 (STP)· cm/(cm2· s · cm. Hg) and the latter was 2.0–3.1. Minimum values of PO2 and PN2 occured at PDMS content of about 55 mol %. The introduction of more than 60 mol % of PDMS resulted in oxygen permeability coefficient which was maintained for more than one moth (PO2 = 2 ? 6 × 10 ?8 cm 3 (STP)· cm/(cm2·s·cm Hg), PO2/PN2 = 2.3–2.7).  相似文献   

9.
The vertical concentration profile of 137Cs in cores of marine sediment of Mumbai Harbor Bay has been studied by the compartment and the diffusion-convection models. Based on the measured concentrations of 137Cs in the sediment layers, the various transport parameters such as sedimentation rate, residence half- time, effective migration velocity, diffusion coefficient and the convective velocities were determined. The sedimentation rate was determined to be 1.61, 1.03 0.69 and 1.25 cm year?1 from the slope of lines obtained from the depth profile of 137Cs in cores using a least-square fitting method at site 1, 2, 3 and 4 respectively. The mean residence half-times, ranging from 11 to 35 years were observed to be the highest at the upper layers (up to 8 cm) of all sites and decreased with sediment depth. Subsequently, the ranges of mean value of effective vertical migration velocity in the same layers were between 0.15 and 0.46 cm year?1. As expected, the vertical migration in the upper sediment layers was very slow and thereafter increased slowly in the succeeding layers (12 cm onwards) of all sites with a mean ranging from 1.11 to 4.13 cm year?1. The obtained migration velocities were quite higher than those reported in literatures for global fallout. The convective velocity and diffusion coefficient at each site were assumed to be constant in the whole depth and calculated under the assumption of steady state. Using a depth-zoned bioturbational mixing model, the estimated biological diffusion coefficients ranged from 7 × 10?7 to 3.8 × 10?6 cms?1 which were within the literature values reported for shallow coastal environments and deep sea.  相似文献   

10.
We describe the synthesis of ß-cyclodextrin modified magnetic nanoparticles (CD-mNPs) as a material for solid-phase extraction of the cancer biomarker 5-hydroxy-indole-3-acetic acid (5-HIAA) from urine. The CD-mNPs were characterized by TEM, FTIR, and XRD, and the kinetics and adsorption isotherms were studied. The strong interaction between the CD-mNPs and 5-HIAA is the main driving force for recognition and extraction, while the magnetic core of the NPs allows their separation from the sample matrix. Recovery of 5-HIAA from the adsorbent using an adequate solvent regenerated the adsorbent for further use. 5-HIAA was then quantified by fluorometry of its complex with ß-CD. The method works in the 1?×?10?7 to 1?×?10?5 mol L?1 (R2 0.9982–0.9996) concentration range, and the limits of detection (3σ) and quantification (10 σ) of the method are 1.2?×?10?8 mol L?1 and 4.01?×?10?8 mol L?1 5-HIAA, respectively. The recovery of 5-HIAA from urine samples spiked with 5-HIAA in three concentrations (1.4?×?10?6, 4.50?×?10?6 and 1.0?×?10?5 mol L?1) are within 63?±?3 %.
Figure
Cyclodextrin functional magnetic nanoparticles as sorbents for separation of 5-hydroxy-3-indole acetic acid and its fluorescence determination after released with methanol.  相似文献   

11.
《Analytical letters》2012,45(14):2727-2742
Abstract

This report describes an attempt to develop potentiometric Mg2+ sensors based on a liquid polymeric membrane. Membrane incorporating 4,5-Bis(benzoylthio)-1,3- dithiole-2-thione (Bz2dmit) as ionophore, with composition Bz2 dmit:NaTPB:NB:PVC in the ratio 2.5:2.5:65:30 (w/w), exhibits the best result for potentiometric sensing of Mg2+ ions. The proposed electrode, based on Bz2 dmitwith nitrobenzene (NB) as a solvent mediator in a polyvinyl chloride (PVC) membrane matrix, exhibited a near-Nernstian response to Mg2+ in the concentration range of 1.0 × 10?5 to 1.0 × 10?1 M, with a slope of 29.2 mV per decade of activity of Mg2+. The lower limit of detection was 1.0 × 10?5 M. This sensor showed high selectivity with respect to alkaline, alkaline earth, transition, and heavy metal ions, except for Sr2+, and could be used over a pH range of 3.5–9.0. It can be used for at least 2 mo without considerable divergence in potentials and has a relatively fast response of <10 s. It was applied successfully as an indicator electrode in potentiometric titration of Mg2+ ions with EDTA.  相似文献   

12.
《Analytical letters》2012,45(13):2131-2140
Abstract

A simple and sensitive flow-injection chemiluminescence method was proposed for the determination of three thiol compounds, namely cysteine, acetylcysteine, and glutathione. Weak chemiluminescence was produced directly by the reaction of these mentioned compounds with luminol in an alkaline solution without adding any special oxidants. The chemiluminescence signal could be significantly enhanced by Cu(II). The proposed method allows the determination of 4.0 × 10?9 to 1.0 × 10?7 g/mL cysteine, 7.0 × 10?10 to 1.0 × 10?7 g/mL acetylcysteine, and 4.0 × 10?9 to 1.0 × 10?6 g/mL glutathione with the detection limits of 8 × 10?10 g/mL, 2 × 10?11 g/mL, and 7 × 10?10 g/mL, respectively. The proposed method was applied to the analysis of some commercial formulations containing acetylcysteine.  相似文献   

13.
This article presents the development of a sensor made from a gold electrode and a receiving polymeric membrane based on tannin extracted from the skin of Punica granatum. L (pomegranate) for real-time detection of heavy metals in a hydrous environment. The basic principle of this device is the complexing (chelating) of metal ions through the adjacent hydroxyl groups contained in the chemical structures of the tannins. The electrochemical characterisation was performed by using electrochemical impedance spectroscopy and square wave voltammetry. Other morphological and structural analyses were performed by using Fourier transform infrared spectroscopy and atomic-force microscopy. The results obtained showed the high sensitivity of the developed device (detection limits of 6.35 × 10?9 g L?1 for Cu2+, 1.1 × 10?8 g L?1 for Cd2+ and 2 × 10?7 g L?1 for Pb2+) and the possibility of simultaneously detecting several heavy metals, each one in a highly selective manner with highly acceptable response time (48s).  相似文献   

14.
Atmospheric tritium activity is measured regularly around Narora Atomic Power Station (NAPS) since gaseous waste, which contains tritium, is being released through a 145 m high stack at NAPS site. Atmospheric data collected during 2004–2008 shows a large variation of 3H concentration in air, fluctuating in the range of ≤0.2–91.6 Bq m?3. Significantly, higher tritium levels were measured in samples near the site boundary (1.6 km) of NAPS compared to off-site locations. The atmospheric dilution factor was found to be in the range of 1.1 × 10?7–7.3 × 10?7 s m?3. The scavenging ratio of NAPS site was found to be varying from 0.2 × 104 to 14.1 × 104 (Bq m?3 rain water per Bq m?3 air). The inhalation dose to a member of general public at different distances (1.6–30 km) from NAPS site was found to be ranged from 0.08–0.21 μSv year?1.  相似文献   

15.
A counter-current two-compartment dialyzer equipped with an anion-exchange membrane Neosepta-AFN was used to study dialysis of a hydrochloric acid and lithium chloride mixture. To quantify this process, several characteristics were calculated from the data obtained at steady state. First, the dialysis process was characterized by the acid recovery yield and rejection coefficient of salt, which were in the range of 61–98% and 62–94%, respectively (for HCl and LiCl concentrations from 0.1 to 1.0 kmol m?3 and volumetric liquid flow rates from 8 × 10?9 to 24 × 10?9 m3 s?1). Furthermore, this study proved that dialysis of an HCl + LiCl mixture can be quantified by a single characteristic, i.e., the permeability coefficient of the membrane to chloride ions, which is a function of the concentration of both the components in the feed.  相似文献   

16.
Novel films consisting of multi-walled carbon nanotubes (MWCNTs) were fabricated by means of the chemical vapor deposition technique with decomposition of either acetonitrile (ACN) or benzene (BZ) in the presence of ferrocene (FeCp2) which served as catalyst. The electrochemical response of the two different kinds of MWCNT-based films, further referred to as MWCNT-ACN and MWCNT-BZ, towards the oxidation of dopamine (DA) to dopamine-o-quinone (DAQ) was tested by means of cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy. Both MWCNT-based films exhibit quasi-reversible response towards DA/DAQ with some slight kinetic differences; specifically, the charge-transfer process was found to be faster on MWCNT-ACN (k s?=?35.3?×?10?3 cm s?1) compared to MWCNT-BZ (k s?=?6.55?×?10?3 cm s?1). The detection limit of MWCNT-BZ for DA (0.30 μM) appears to be poorer compared to that of MWCNT-ACN (0.03 μM), but nevertheless, both MWCNT-based films exhibit greater detection ability compared to other electrodes reported in the literature. The sensitivities of MWCNT-ACN and MWCNT-BZ towards DA/DAQ were determined as 0.65 and 0.22?A M?1 cm?2, respectively. The findings suggest that the fabricated MWCNT-based electrodes can be successfully applied for the detection of molecules with biological interest.  相似文献   

17.
《Analytical letters》2012,45(18):3417-3429
Abstract

A flow‐injection spectrophotometric procedure was developed for determining N‐acetylcysteine in pharmaceutical formulations. The sample was dissolved in deionized water and 400 µl of the solution was injected into a carrier stream of 1.0×10?2 mol l?1 sodium borate solution. The sample flowed through a column (70 mm length×2.0 mm i.d.) packed with Zn3(PO4)2 immobilized in a polymeric matrix of polyester resin and Zn(II) ions were released from the solid‐phase reactor because of the formation of the Zn(II) (N‐acetylcysteine)2 complex. The mixture merged with a stream of borate buffer solution (pH 9.0) containing 5.0×10?4 mol l?1 Alizarin red S and the Zn(II)Alizarin red complex formed was measured spectrophotometrically at 540 nm. The analytical curve was linear in the N‐acetylcysteine concentration range from 3.0×10?5 to 1.5×10?4 mol l?1 (4.9 to 24.5 µg ml?1) with a detections limit of 8.0×10?6 mol l?1 (1.3 µg ml?1). The relative standard deviations (RSDs) were smaller than 0.5% (n=10) for solutions containing 5.0×10?5 mol l?1 (8.0 µg ml?1) and 8.0×10?5 mol l?1 (13.0 µg ml?1) of N‐acetylcysteine, and the analytical frequency was 60 determinations per hour. A paired t‐test showed that all results obtained for N‐acetylcysteine in commercial formulations using the proposed flow‐injection procedure and a comparative procedure agreed at the 95% confidence level.  相似文献   

18.
《Analytical letters》2012,45(7):1144-1157
Abstract

The fabrication and analytical applications of two types of potentiometric sensors for the determination of ketoconazole (KET) are described. The sensors are based on the use of KET-molybdophosphoric acid (MPA) ion pair as electroactive material. The fabricated sensors include both polymer membrane and carbon paste electrodes. Both sensors showed a linear, stable and near Nernstian slope of 57.8 mV/decade and 55.2 mV/decade for PVC membrane and carbon paste sensors respectively over a relatively wide range of KET concentration (1 × 10?2 ? 5 × 10?5and 1 × 10?2 ? 1 × 10?6). The sensors showed a fast response time of < 30 sec and < 45 sec. A useful pH range of 3–6 was obtained for both types of sensors. A detection limit of 2.96 × 10?5M was obtained for PVC membrane sensor and 6.91 × 10?6 M was obtained for carbon paste sensor. The proposed sensors proved to have a good selectivity for KET with respect to a large number of ions. The proposed sensors were successfully applied for the determination of KET in pharmaceutical formulations. The results obtained are in good agreement with the values obtained by the standard method.  相似文献   

19.
《Analytical letters》2012,45(1):67-81
Abstract

It was found that the fluorescence intensity of lanthanum (III) (La3+)‐quercetin (Qu) complex is greatly enhanced by proteins in the presence of sodium dodecyl benzene sulfonate (SDBS). Based on this finding, a new fluorimetric method for the determination of proteins was developed. Under optimum conditions, the enhanced intensity of fluorescence is in proportion to the concentration of proteins in the range of 2.5×10?8 to 1.0×10?5 g/mL for bovine serum albumin (BSA), 5.0×10?8 to 1.5×10?5 g/mL for human serum albumin (HSA), and 1.0×10?7 to 1.5×10?5 g/mL for egg albumin (EA). Their detection limits (S/N=3) are 5.0×10?9 g/mL, 7.0×10?9 g/mL, and 2.1×10?8 g/mL, respectively. The interaction mechanism was also studied.  相似文献   

20.
A polymeric membrane based Pb(II) selective potentiometric sensor was developed by using 1,3,7,9-tetraaza-2,8-dithia-4,10-dimethyl-6,12-diphenylcyclododeca-4,6,10,12-tetraene (TDDDCT) as an electroactive material along with anion excluder sodium tetraphenylborate (NaTPB) and plasticizer dioctylphthalate (DOP). The best performance in terms of slope, concentration range and response time was exhibited by the membrane having TDDDCT:PVC:DOP:NaTPB in the ratio 3:32:62:3 (w/w%). Potentiometric results show that the developed sensor works well in the concentration range 5.0 × 10?7–1.0 × 10?1 M with a near Nernstian slope of 29.5 (±0.5) mV decade?1. The detection limit is down to 2.5 × 10?7 M. The working pH range of this sensor is 2.8–7.0 and it works well in partially nonaqueous medium up to 25 % (v/v) methanol and ethanol. It exhibits a fast response time of 10 s. Selectivity coefficient values of various interfering ions were determined by the fixed interference method (FIM). The sensor reveals good selectivity for Pb(II) ions over other metal ions investigated. The developed sensor is used in the determination of lead in ‘Eveready battery waste’ and as an indicator electrode in the potentiometric titration of Pb(II) against EDTA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号