首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Early crack signals in critical infrastructure components of major equipment are hardly to be extracted due to its low signal noise ratio (SNR). A de-noising method combined wavelet packet (WP) technology with sparse code shrinkage (SCS) is proposed in this study. Firstly, WP reconstruction technology is used to reserve the crack signal with a specified frequency range. That is, the signal is decomposed by Meyer wavelet into five layers, and the signal with the frequency range from 187.5 kHz to 609.375 kHz is reserved. Then SCS method removes noise within the specified frequency range. Namely, the probability density function (PDF) of the signal independent coefficients is estimated via the generalized Gaussian model (GGM) in the independent component analysis (ICA) space. The nonlinear de-noising is finished by utilizing maximum a posteriori (MAP) estimate. The results obtained by the combined method are compared with those generated by the SCS method and the WP de-noising method. It demonstrates that the combined method is the best one among the three methods in extracting weak signals. Its output SNR is −2.38 dB and the correlation coefficient (CC) is 0.54 when the input SNR is −20 dB. They are higher than those obtained by the SCS method (SNR −4.46 dB and CC 0.51). The WP method is the worst (SNR −3.54 dB and CC −0.003). Therefore, the combined method is quite suitable for weak signal extraction.  相似文献   

2.
Acceleration target detection based on LFM radar   总被引:1,自引:0,他引:1  
In radar systems, the echo signal caused by an accelerated target can be similarly considered as linear frequency modulation (LFM) signal. In high signal-to-noise ratio (SNR), discrete polynomial-phase transform (DPT) algorithm can be used to detect the echo signal, as it has low computation complexity and high real-time performance. However, in low SNR, the DPT algorithm has a large mean square error of the rate of frequency modulation and a low detection probability. In order to detect LFM signal in low SNR, this paper proposes a detection method, segment discrete polynomial-phase transform (SDPT), which means, at first, dividing the whole echo pulses into several segments with same duration in time domain, and then, using coherent accumulation method of DFT to segments, at last, processing this signal with DPT in intra-segment. In the case of a large number of segments, the SDPT can improve the output SNR. In addition, in a certain SNR, to the target signal with big sampling interval, large acceleration and less segments, this paper proposes an algorithm to detect the LFM signal generated from the combination of an improved DPT (IDPT) and fractional Fourier transform (FRFT). The output SNR of this algorithm is connected with the length of time delay. In the simulation, when the length of the time delay is 0.2 N, the output SNR is 2.5 dB more than that which results from directly using DPT. Finally, the detection performance and algorithm complexity of the proposed algorithm were analyzed, and the simulated and measured data verify the effectiveness of the algorithm.  相似文献   

3.
This paper studied multi component LFM signal detection and parameter estimation under the noise circumstance of various signal-to-noise ratios. Based on the analysis of fractional Fourier transform detection and parameter estimation on simple component LFM signal, this paper proposed the method of multi component LFM signal detection and parameter estimation based on EEMD–FRFT (Ensemble Empirical Mode Decomposition–Fractional Fourier transform), and this method was that with the EEMD algorithm, from the frequency domain decompose the analyzable signal to narrow-bandwidth components, whose center frequency changed from high to low, then accurately estimate the parameter and detect the signal of each component out of the pseudo-component with FrFT. This method solved the problem of mode aliasing of signal decomposition; meanwhile, the problem of detecting the multi component LFM signal would be simplified as the problem of one-dimensional search in small scope, which could reduce the amount of operation and improved the detection accuracy. A simulation computation for multi component LFM signal of various SNR (signal-to-noise ratios) was made and the result showed that the error of parameter estimation was less than 5% in the case of SNR not less than −10 dB.  相似文献   

4.
Li C  Huang L  Duric N  Zhang H  Rowe C 《Ultrasonics》2009,49(1):61-72
Objective and motivationTime-of-flight (TOF) tomography used by a clinical ultrasound tomography device can efficiently and reliably produce sound-speed images of the breast for cancer diagnosis. Accurate picking of TOFs of transmitted ultrasound signals is extremely important to ensure high-resolution and high-quality ultrasound sound-speed tomograms. Since manually picking is time-consuming for large datasets, we developed an improved automatic TOF picker based on the Akaike information criterion (AIC), as described in this paper.MethodsWe make use of an approach termed multi-model inference (model averaging), based on the calculated AIC values, to improve the accuracy of TOF picks. By using multi-model inference, our picking method incorporates all the information near the TOF of ultrasound signals. Median filtering and reciprocal pair comparison are also incorporated in our AIC picker to effectively remove outliers.ResultsWe validate our AIC picker using synthetic ultrasound waveforms, and demonstrate that our automatic TOF picker can accurately pick TOFs in the presence of random noise with absolute amplitudes up to 80% of the maximum absolute signal amplitude. We apply the new method to 1160 in vivo breast ultrasound waveforms, and compare the picked TOFs with manual picks and amplitude threshold picks. The mean value and standard deviation between our TOF picker and manual picking are 0.4 μs and 0.29 μs, while for amplitude threshold picker the values are 1.02 μs and 0.9 μs, respectively. Tomograms for in vivo breast data with high signal-to-noise ratio (SNR) (∼25 dB) and low SNR (∼18 dB) clearly demonstrate that our AIC picker is much less sensitive to the SNRs of the data, compared to the amplitude threshold picker.Discussion and conclusionsThe picking routine developed here is aimed at determining reliable quantitative values, necessary for adding diagnostic information to our clinical ultrasound tomography device - CURE. It has been successfully adopted into CURE, and allows us to generate such values reliably. We demonstrate that in vivo sound-speed tomograms with our TOF picks significantly improve the reconstruction accuracy and reduce image artifacts.  相似文献   

5.
Coded excitation can improve the signal-to-noise ratio (SNR) in ultrasound tissue harmonic imaging (THI). However, it could suffer from the increased sidelobe artifact caused by incomplete pulse compression due to the spectral overlap between the fundamental and harmonic components of ultrasound signal after nonlinear propagation in tissues. In this paper, three coded tissue harmonic imaging (CTHI) techniques based on bandpass filtering, power modulation and pulse inversion (i.e., CTHI-BF, CTHI-PM, and CTHI-PI) were evaluated by measuring the peak range sidelobe level (PRSL) with varying frequency bandwidths. From simulation and in vitro studies, the CTHI-PI outperforms the CTHI-BF and CTHI-PM methods in terms of the PRSL, e.g., −43.5 dB vs. −24.8 dB and −23.0 dB, respectively.  相似文献   

6.
The diagnosis of train bearing defects plays a significant role in maintaining the safety of railway transport. However, the phenomenon of Doppler Effect in the acoustic signal recorded by the wayside Acoustic Defective Bearing Detector (ADBD) system leads to the difficulty for fault diagnosis of train bearings with a high moving speed. This paper proposes a double-searching solution based on improved Dopplerlet transform and Doppler transient matching to overcome the difficulty in wayside acoustic bearing diagnosis. In the solution, the first searching procedure is to extract necessary parameters of Doppler Effect under the situation with very low signal-to-noise ratio (SNR) based on an improved Dopplerlet transform. Using the obtained parameters, the Doppler Effect can be embedded into the constructed periodic Laplace wavelet transient models. Subsequently, the second searching procedure is conducted to search fault impact period of the defective bearing through an operation, called Doppler transient matching, which is to calculate the correlation coefficient between the Doppler transient model and the filtered raw signal with the Doppler Effect. The proposed double-searching algorithm can adapt to the real Doppler Effect situation and extract the exact fault impact period from the Doppler distorted signal, and thus shows powerful capability to analyze wayside acoustic signals from train bearings. The proposed wayside acoustic diagnostic scheme is verified by means of a simulated Doppler distorted signal with a very low SNR (−20 dB) and the experiments conducted on train bearings. The results indicate that the proposed algorithm is effective and has obvious advantages for ADBD system.  相似文献   

7.
A concise fractional Fourier transform(CFRFT) is proposed to detect the linear frequency-modulated(LFM) signal with low signal to noise ratio(SNR).The frequency axis in time-frequency plane of the CFRFT is rotated to get the spectrum of the signal in different angles using chirp multiplication and Fourier transform(FT).For LFM signal which distributes as a straight line in time-frequency plane,the CFRFT can gather the energy in the corresponding angle as a peak and improve the detection SNR,thus the LFM signal of low SNR can be detected.Meanwhile,the location of the peak value relates to the parameters of the LFM signal.Numerical simulations and experimental results show that,the proposed method can be used to efficiently detect the LFM signal masked by noise and to estimate the signal's parameters accurately.Compared with the conventional fractional Fourier transform(FRFT),the CFRFT reduces the transform complexity and improves the real-time detection performance of LFM signal.  相似文献   

8.
The biocompatible trisacryl particles (TMP) are made of a cross-linked acrylic copolymer. Their inherent acoustic properties, studied for a contrast agent application, have been previously demonstrated in a in vitro Couette device. To measure their acoustic behaviour under circulating blood conditions, the TMP backscatter enhancement was further evaluated on a home-made flow phantom at different TMP doses (0.12-15.6 mg/ml) suspended in aqueous and blood media, and in nude mice (aorta and B16 grafted melanoma). Integrated backscatter (IB) was measured by spectral analysis of the Doppler signals recorded from an ultrasound system (Aplio®) combined with a 12-MHz probe. Doppler phantom experiments revealed a maximal IB of 17 ± 0.88 dB and 7.5 ± 0.7 dB in aqueous and blood media, respectively. IB measured on mice aorta, in pulsed Doppler mode, confirmed a constant maximal value of 7.29 ± 1.72 dB over the first minutes after injection of a 7.8 mg/ml TMP suspension. Following the injection, a 60% enhancement of intratumoral vascularization detection was observed in power Doppler mode. A preliminary histological study revealed inert presence of some TMP in lungs 8 and 16 days after injection.Doppler phantom experiments on whole blood allowed to anticipate the in vivo acoustic behaviour. Both protocols demonstrated TMP effectiveness in significantly increasing Doppler signal intensity and intratumoral vascularization detection. However, it was also shown that blood conditions seemed to shadow the TMP contrast effect, as compared to in vitro observations. These results encourage further investigations on the specific TMP targeting and on their bio-distribution in the different tissues.  相似文献   

9.
Wang P  Shen Y  Wang Q 《Ultrasonics》2007,46(2):168-176
In this paper, a novel dynamic filtering method using Gaussian wavelet filters is proposed to remove noise from ultrasound echo signal. In the proposed method, a mother wavelet is first selected with its central frequency (CF) and frequency bandwidth (FB) equal to those of the transmitted signal. The actual frequency of the received signal at a given depth is estimated through the autocorrelation technique. Then the mother wavelet is dilated using the ratio between the transmitted central frequency and the actual frequency as the scale factor. The generated daughter wavelet is finally used as the dynamic filter at this depth. Frequency-demodulated Gaussian wavelet is chosen in this paper because its power spectrum is well-matched with that of the transmitted ultrasound signal. The proposed method is evaluated by simulations using Field II program. Experiments are also conducted out on a standard ultrasound phantom using a 192-element transducer with the center frequency of 5 MHz. The phantom contains five point targets, five circular high scattering regions with diameters of 2, 3, 4, 5, 6 mm respectively, and five cysts with diameters of 6, 5, 4, 3, 2 mm respectively. Both simulation and experimental results show that optimal signal-to-noise ratio (SNR) can be obtained and useful information can be extracted along the depth direction irrespective of the diagnostic objects.  相似文献   

10.
为方便兰姆波信号分析与模式定征,提出一种将短时傅里叶变换(Short-Time Fourier Transform,STFT)与独立元分析(Independent Component Analysis,ICA)相结合的多模式超声兰姆波识别方法。首先通过STFT将兰姆波时域信号投影至时频域,基于各模式信号在时频域相对独立的特点,利用ICA实现混叠模式分离。根据分离模式时频能量脊提取各模式群速度曲线,进而估计板厚。将方法运用于时域有限差分(Finite-Difference Time-Domain,FDTD)法仿真与钢板实验,分离得到A0、A1和S0三种模式。仿真与实验中平均群速度估计误差约为1.5%和2.0%,板厚估计误差约为0.3%和2.0%。仿真结果表明,在信噪比(Signal-to-Noise Ratio,SNR)不小于0 dB的情况下,时频域独立元分析方法均可实现兰姆波多模式分离、群速度曲线提取及板厚估计。   相似文献   

11.
Terahertz modulator using photonic crystals   总被引:1,自引:0,他引:1  
In this letter, a novel terahertz wave modulator based on a silicon oxide/polyaniline photonic crystal is proposed. The modulation mechanism of the novel modulator is based on a dynamic shift of the photonic band gap by the applied external electric field. Its performances were investigated with the finite-difference time-domain method. The novel modulator has 3 dB modulation bandwidth of 10 kHz, a size as small as 20 mm and its extinction ratio larger than 30 dB at the frequency of 1 THz.  相似文献   

12.
Enhancing cavitation activity with minimal acoustic intensities could be interesting in a variety of therapeutic applications where mechanical effects of cavitation are needed with minimal heating of surrounding tissues. The present work focuses on the relative efficiency of a signal combining two neighbouring frequencies and a one-frequency signal for initiating ultrasound inertial cavitation. Experiments were carried out in a water tank, using a 550 kHz piezoelectric composite spherical transducer focused on targets with 46 μm roughness. The acoustic signal scattered, either by the target or by the cavitation bubbles, is filtered using a spectral and cepstral-like method to obtain an inertial cavitation activity measurement. The ultrasound excitations consist of 1.8 ms single bursts of single frequency f0 = 550 kHz excitation, in the monofrequency case, and of dual frequency f1 = 535 kHz and f2 = 565 kHz excitation, in the bifrequency case. It is shown that depending on the value of the monofrequency cavitation threshold intensity the bifrequency excitation can increase or reduce the cavitation threshold. The analysis of the thresholds indicates that the mechanisms involved are nonlinear. The progress of the cavitation activity beyond the cavitation threshold is also studied. The slope of the cavitation activity considered as a function of the acoustic intensity is always steeper in the case of the bifrequency excitation. This means that the delimitation of the region where cavitation occurs should be cleaner than with a classical monofrequency excitation.  相似文献   

13.
Generally, ultrasonic method and an elastic impact wave method are mentioned as examples representing the nondestructive test method. However, the ultrasonic method is known for the investigation of shallow depth becoming very shallow because of its small input. And the elastic impact wave method uses for example, a hammer for the discrimination of the reflection wave produced by minute cracks existing in the object, which is difficult. Theoretically, if it becomes possible to input the vibration of an ultrasonic domain into artificial structures such as a concrete and a boulder with strong amplitude, deeper investigation of depth and higher precision will be attained. The authors have developed a new ultrasonic method by using ultrasonic wave of the chirp signal, using the input of this system and using auto correlation and cepstrum as the analysis methods. In this paper, the experiment is classified into Pattern 1 and Pattern 2. In Pattern 1, the experiment of receiving the reflection wave was carried out using the concrete block with a width of 1300 mm and the down chirp signal from 50 kHz to 40 kHz. In Pattern 1, a reflection wave was clearly detected, and the length of the concrete block was calculated using auto correlation analysis, and was obtained as 1311.76 mm. In Pattern 2, the experiment of receiving the reflection wave was carried out using the same concrete block and the down chirp signal from 150 kHz to 130 kHz. In Pattern 2, the direct wave and the reflection wave were mixed, therefore it was not possible to presume the length from the obtained waveform. So cepstrum analysis method was used, and the traveling time of the reflection wave was obtained. In this result, the length of the concrete block was given as 1278.25 mm.  相似文献   

14.
Hirata S  Kurosawa MK 《Ultrasonics》2012,52(7):873-879
Real-time distance measurement of a moving object with high accuracy and high resolution using an ultrasonic wave is difficult due to the influence of the Doppler effect or the limit of the calculation cost of signal processing. An over-sampling signal processing method using a pair of LPM signals has been proposed for ultrasonic distance and velocity measurement of moving objects with high accuracy and high resolution. The proposed method consists of cross correlation by single-bit signal processing, high-resolution Doppler velocity estimation with wide measurement range and low-calculation-cost Doppler-shift compensation. The over-sampling cross-correlation function is obtained from cross correlation by single-bit signal processing with low calculation cost. The Doppler velocity and distance of the object are determined from the peak interval and peak form in the cross-correlation function by the proposed method of Doppler velocity estimation and Doppler-shift compensation. In this paper, the proposed method of Doppler-shift compensation is improved. Accuracy of the determined distance was improved from approximately within ±140 μm in the previous method to approximately within ±10 μm in computer simulations. Then, the proposed method of Doppler velocity estimation is evaluated. In computer simulations, accuracy of the determined Doppler velocity and distance were demonstrated within ±8.471 mm/s and ±13.87 μm. In experiments, Doppler velocities of the motorized stage could be determined within ±27.9 mm/s.  相似文献   

15.
The gain flattening of the erbium doped fiber amplifier (EDFA) is one of the most important aspects in the EDFA which the gain is wavelength dependent. For the first time the limitation of EDFA gain optimizing for a 32-channel wavelength division multiplexing (WDM) systems is investigated and reported in this paper. In a 32-channel WDM system the most favorable flatness gain achieved was 23.16 ± 1.51 dB with an average noise figure of 5.70 dB. This outcome proposes that the method does not achieve a uniform spectral gain in a 32-channel WDM system that incorporates a bandwidth of around 25 nm. Based on the simulation results the intrinsic optimization of EDFA causes the poor SNR and peak signal power with great variation over a transmission distance of 480 km single mode fiber.  相似文献   

16.
Shen CC  Shi TY 《Ultrasonics》2011,51(5):554-560

Background

Ultrasound tissue harmonic signal generally provides superior image quality as compared to the linear signal. However, since the generation of the tissue harmonic signal is based on finite amplitude distortion of the propagating waveform, the penetration and the sensitivity in tissue harmonic imaging are markedly limited because of the low signal-to-noise ratio (SNR).

Methods

The method of third harmonic (3f0) transmit phasing can improve the tissue harmonic SNR by transmitting at both the fundamental (2.25 MHz) and the 3f0 (6.75 MHz) frequencies to achieve mutual enhancement between the frequency-sum and the frequency-difference components of the second harmonic signal. To further increase the SNR without excessive transmit pressure, coded excitation can be incorporated in 3f0 transmit phasing to boost the tissue harmonic generation.

Results

Our analyses indicate that the phase-encoded Golay excitation is suitable in 3f0 transmit phasing due to its superior transmit bandwidth efficiency. The resultant frequency-sum and frequency-difference components of tissue harmonic signal can be simultaneously Golay-encoded for SNR improvement. The increase of the main-lobe signal with the Golay excitation in 3f0 transmit phasing are consistent between the tissue harmonic measurements and the simulations. B-mode images of the speckle generating phantom also demonstrate the increases of tissue harmonic SNR for about 11 dB without noticeable compression artifacts.

Conclusion

For tissue harmonic imaging in combination with the 3f0 transmit phasing method, the Golay excitation can provide further SNR improvement. Meanwhile, the axial resolution can be effectively restored by pulse compression while the lateral resolution remains unchanged.  相似文献   

17.
一种强噪声背景下微弱超声信号提取方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王大为  王召巴 《物理学报》2018,67(21):210501-210501
为解决在强噪声背景下获取超声信号的难题,基于粒子群优化算法和稀疏分解理论提出一种强噪声背景下微弱超声信号提取方法.该方法将降噪问题转换为在无穷大参数集上对函数进行优化的问题,首先以稀疏分解理论和超声信号的结构特点为依据构建了粒子群优化算法运行所需要的目标函数及去噪后信号的重构函数,从而将粒子群优化算法和超声信号降噪联系在一起;然后根据粒子群优化算法可以在连续参数空间寻优的特点建立了用于匹配超声信号的连续超完备字典,并采用改进的自适应粒子群优化算法在该字典中对目标函数进行优化;最后根据对目标函数在字典上的优化结果确定最优原子,并利用最优原子按照重构函数重构出降噪后的超声信号.通过对仿真超声信号和实测超声信号的处理,结果表明本文提出的方法可以有效提取信噪比低至-4 dB的强噪声背景下的微弱超声信号,且和基于自适应阈值的小波方法相比本文方法表现出更好的降噪性能.  相似文献   

18.
The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (−0.3 dB) and THD (−62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (−1.4 dB), THD (−56.0 dB) and RT (119 ns)) at 70 MHz. The −6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption.  相似文献   

19.
针对低信噪比下线性调频信号的检测问题,提出了一种简明分数阶傅里叶变换方法。该变换借助chirp相乘和傅里叶变换对时频平面上的频率轴进行旋转,以获取信号在各个角度下频率轴上的频谱分布。对时频分布呈直线状的线性调频信号,简明分数阶傅里叶变换能在特定角度上将信号能量聚集成尖锐的强能量峰,从而提高信噪比,实现对线性调频信号的可靠检测和参数估计。数值仿真和实验验证结果表明,简明分数阶傅里叶变换可对较低信噪比的线性调频信号实现有效检测,并由变换域峰值的位置对信号参数进行准确估计。相比于传统的分数阶傅里叶变换方法,简明分数阶傅里叶变换的复杂度更低,离散计算效率更高,在对噪声掩盖下的线性调频信号进行检测和参数估计时能更好地满足实时处理的要求。   相似文献   

20.
提出近似零伪范数约束的稀疏压缩与重构方法。该方法首先采用稀疏二进制矩阵作为测量矩阵,对信号进行压缩和传输;在接收端仅给定测量矩阵和压缩信号的条件下,采用小波滤波器设计字典,利用最陡梯度法寻优和投影方法求得信号的稀疏表达,最终结合稀疏表达值与字典用于水声数据重建,海试实验结合扫频以及单载频信号进行处理,采用NMSE、SNR以及算法运行时间作为算法的评估指标,以验证本文方法相对于传统算法在恢复精度上的提高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号