首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 160 毫秒
1.
聚电解质PSS/PDDA分子沉积膜动力学   总被引:3,自引:0,他引:3  
高芒来  陈刚 《应用化学》2003,20(10):972-0
聚苯乙烯磺酸钠;;聚二烯丙基二甲基胺盐酸盐;聚电解质PSS/PDDA分子沉积膜动力学  相似文献   

2.
杜鑫  刘湘梅  郑奕  贺军辉 《化学学报》2009,67(5):435-441
采用聚苯乙烯磺酸钠(PSS)和聚二烯丙基二甲基氯化铵(PDDA)两种聚电解质, 通过静电层层自组装成功地将MCM-41介孔二氧化硅纳米粒子包覆到聚苯乙烯(PS)微球表面. 实验结果表明, 当以尺寸为1.4 μm的PS微球为核时, 包覆了两个聚电解质双层(PDDA/PSS)2的PS(PDDA/PSS)2(PDDA/MCM-41)复合结构微粒与包覆了一个聚电解质双层(PDDA/PSS)的PS(PDDA/PSS)(PDDA/MCM-41)复合结构微粒相比, 复合结构微粒之间的交联程度降低, 但是MCM-41纳米粒子在聚苯乙烯微球表面的包覆都比较松散, 且产物中存在大量杂质. 而当以尺寸为5 μm的聚苯乙烯微球为核时, MCM-41纳米粒子紧密地包覆在聚苯乙烯微球表面, 复合结构微粒之间只有少量桥连物, 且产物中杂质很少.  相似文献   

3.
采用静电自组装方法在五氧化二钽(Ta2O5)介质氧化膜上制备了聚二烯丙基二甲基氯化铵(PDDA)/聚苯乙烯磺酸钠(PSS)和聚二烯丙基二甲基氯化铵/聚-3,4-乙烯二氧噻吩-聚苯乙烯磺酸钠(PEDOT-PSS)超薄膜.研究了两种自组装超薄膜在Ta2O5介质氧化薄膜上的组装特性.结果表明两种自组装膜能够稳定地组装于Ta2O5介质膜表面,并有效降低薄膜的表面粗糙度.进一步研究了两种自组装超薄膜修饰的Ta2O5电容结构的电性能.结果表明静电自组装膜对Ta2O5介质膜表面进行修饰后,有效地隔离了介质氧化膜中的缺陷,降低了电容的漏电流并提高耐电压能力;研究还发现不同厚度的超薄膜对Ta2O5电容结构的耐压特性有不同程度的影响,较厚的薄膜可以更好地提高电容的耐压能力并降低漏电流,但会增加电容的等效串联电阻(ESR).另外,在相同薄膜层数的情况下,聚合物电解质PEDOT-PSS良好的导电性能降低了复合超薄膜的电阻,使得PDDA/PEDOT-PSS修饰的电容结构ESR值较低.  相似文献   

4.
胶体颗粒在聚电解质多层膜表面的可控组装   总被引:2,自引:1,他引:1  
利用原子力显微镜和扫描电子显微镜研究了磺化聚苯乙烯胶体颗粒在由聚二甲基二烯丙基氯化铵和聚苯乙烯磺酸钠层状自组装而成的多层膜表面的组装.该组装受表面性质影响,通过对多层膜的最外层的组装条件或利用盐溶液对多层膜进行后处理可以控制胶体颗粒在膜表面的组装密度.  相似文献   

5.
许利刚  李晓禹  贺军辉 《化学学报》2011,69(22):2648-2652
通过层层自组装方法制备的二氧化硅纳米粒子涂层由于具有增透、超亲水的良好性质, 引起了广泛关注. 然而, 这种涂层的耐磨性往往达不到实际应用的要求. 本工作尝试通过后处理来增强涂层耐磨性. 首先采用自制二氧化硅纳米颗粒, 聚二烯丙基二甲基氯化铵(PDDA)和聚苯乙烯磺酸钠(PSS), 通过层层自组装制备了PDDA/SiO2纳米粒子涂层, 其中(PDDA/SiO2)6涂层透过率最高. 随后将(PDDA/SiO2)6涂层依次经过124 ℃水热处理1 h和700 ℃快速淬火200 s处理, 得到同时具有超亲水性和增透性的涂层, 其中(PDDA/SiO2)6涂层在可见光范围内最大透过率高达99.0%. 实验表明, 这种后处理也极大地提高了涂层的耐磨性.  相似文献   

6.
张信  储诚灿  黄凯华  苏朝晖 《应用化学》2012,29(12):1433-1437
以聚二烯丙基二甲基氯化铵和聚苯乙烯磺酸钠为构筑单元,通过静电层层自组装制备了多层膜,利用薄膜中存在的抗衡阴离子,选择AuCl-4和PtCl2-6作为Au和Pt的前驱体,通过连续的阴离子交换/还原,原位制备了Au-Pt双金属纳米粒子。 紫外-可见分光光度法、透射电子显微镜和能量色散X射线能谱数据表明,在聚电解质多层薄膜中成功地制备了具有核壳结构的Au@Pt双金属纳米粒子。 这种纳米粒子在电化学催化、燃料电池方面具有潜在的应用价值。  相似文献   

7.
王晨  严鹏  肖进新 《物理化学学报》2009,25(9):1775-1778
 通过表面张力及荧光探针方法, 研究了癸基硫酸钠和癸烷磺酸钠与阳离子聚电解质聚二甲基二烯丙基氯化铵(PDMDAAC)的相互作用. 结果表明, 虽然单一癸基硫酸钠和癸烷磺酸钠性质非常相似, 但它们与PDMDAAC的相互作用有明显差别, 癸基硫酸盐与PDMDAAC的相互作用明显强于癸烷磺酸盐. 通过量子化学计算结果对本文实验观测结果进行了解释.  相似文献   

8.
有机高分子与聚合硫酸铁的复配特性   总被引:2,自引:0,他引:2  
刘立华  李菁 《化学研究》2006,17(1):56-60
研究了水溶性有机高分子(OP)与聚合硫酸铁(PFS)的复配特点,从分子结构和溶剂化角度探讨了OP在PFS中的稳定机制,并采用FT-IR、SEM和X射线衍射探讨了OP与PFS的相互作用.结果表明:具有吡咯环结构的聚二甲基二烯丙基氯化铵、聚二乙基二烯丙基氯化铵和聚乙烯吡咯烷酮能与PFS复配,且具有较好的稳定性;OP与PFS形成了互相融合的复合体系,主要与PFS中Fe4.67(SO4)6(OH)2.20H2O物相发生相互作用.  相似文献   

9.
近年来 ,基于聚电解质同携带相反电荷的基团之间的静电吸引作用组装超薄复合膜的研究受到广泛的关注 [1~ 7] .但是 ,利用聚电解质来固定生物活细胞的研究尚不多见 .Wen等 [8]曾在水溶液中利用聚电解质复合物构成的微囊来固定人体肿瘤活细胞 .本文将该技术应用于生物活细胞在电极表面的固定化 .利用吸附在金电极上的荷正电的聚二烯丙基二甲基氯化铵 [Poly( diallyldimethylammoniumchloride) ,PDADMAC]将携带负电荷的大麦细胞固定在金电极表面 ,运用扫描隧道显微镜 ( STM)、石英晶体微天平 ( QCM)及共焦激光扫描荧光显微镜对该过程进…  相似文献   

10.
聚电解质PDDA/PSS层层自组装膜的渗透汽化性能   总被引:1,自引:0,他引:1  
采用聚电解质层层自组装(LbL)技术, 在不同盐浓度下制备了聚(二烯丙基二甲基氯化铵)/聚苯乙烯磺酸钠(PDDA/PSS) 多层自组装膜, 并用于渗透汽化性能的研究. 重点考察了组装溶液中NaCl的浓度、组装层数及操作温度对自组装膜的异丙醇脱水性能的影响. 同时, 用扫描电镜观测了不同条件下制备膜的表面形貌. 结果表明, 在高NaCl含量的聚电解质溶液中只需组装几个双层的LbL膜, 即能获得较高的分离因子和较大的通量, 并解释了该LbL膜呈现反“trade-off”现象的原因.  相似文献   

11.
Nanofiltration (NF) membrane processes are attractive to remove multivalent ions. As ion retention in NF membranes is determined by both size and charge exclusion, negatively charged membranes are required to reject negatively charged ions. Layer-by-layer assembly of alternating polycation (PC) and polyanion layers on top of a support is a versatile method to produce membranes. Especially the polyelectrolyte (PE) couple polydiallyldimethylammoniumchloride and poly(sodium-4-styrenesulfonate) (PDADMAC/PSS) is extensively investigated. This PE couple cannot form highly negatively charged membrane surfaces, due to interdiffusion and charge overcompensation of PDADMAC into the PSS layers, which limits the operational window to tailor membrane properties. We propose the use of asymmetric layer formation and show how combining two charge densities of one PC can produce negatively charged NF membranes. Starting from hollow fiber ultrafiltration supports coated with base layers of PDADMAC/PSS, they are coated with PDADMAC/PSS or poly(acrylamide-co-diallyldimethylammoniumchloride), P(AM-co-DADMAC)/PSS layers. P(AM-co-DADMAC) has a charge density of only 32% compared to 100% for PDADMAC. The particular novel membranes coated with P(AM-co-DADMAC) have a highly negatively charged surface and high permeabilities (7–19 L/[m2hbar]), with high retentions for Na2SO4 of up to 95%. These values position the developed membranes in the top range compared to commercial and other layer-by-layer membranes.  相似文献   

12.
Summary: Carboxylated multiwalled carbon nanotubes (MWNTs) were assembled with poly(allylamine hydrochloride) (PAH) onto decomposable colloidal particles, to subsequently yield hollow microcapsules after core removal. A sandwich structure with MWNTs layer embedded in poly(styrenesulfonate sodium salt) (PSS)/PAH multilayers was designed and constructed on melamine formaldehyde particles. Transmission electron microscopy and confocal microscopy revealed the hollow structure and good dispersity of the resultant microcapsules. The MWNTs were uniformly distributed on the capsule walls.

TEM images of (PSS/PAH)5/MWNT/(PAH/PSS)2 microcapsules templated on MF microparticles, after core decomposition (main). They still preserve their continuous and intact structure with no signs of rupture. Inset: magnified surface.  相似文献   


13.
Swelling and shrinking of polyelectrolyte microcapsules consisting of poly(styrene sulfonate, sodium salt) (PSS) and poly(diallyldimethyl ammonium) chloride (PDADMAC) multilayers have been observed in response to temperature and electrolyte exposure, respectively. Heat-induced capsule swelling and capsule wall volume reduction were observed by confocal laser scanning microscopy (CLSM) and scanning force microscopy (SFM). On the other hand, pronounced shrinking in diameter induced by exposure to an electrolyte was observed in parallel to increases in the thickness of the capsule wall. The estimated wall volume was reduced to two thirds of the control for the salt-exposed capsules and one half for the salt-exposed and simultaneously annealed capsules. This reduction in volume was supposedly mainly caused by the compression of the capsule wall due to the ionic screening from the electrolyte. The highly porous microstructure of the multilayers and loosely bound PSS/PDADMAC complex are thought to be responsible for the structure of the PSS/PDADMAC capsules being easily modulated upon annealing and salt-exposure.  相似文献   

14.
The ex vivo expansion of primary human T cells is of considerable interest. Current protocols call for the addition of massive amounts of stimuli. This study presents as alternative the expansion of such cells in semipermeable sodium cellulose sulfate/poly(diallyldimethyl) ammonium chloride (SCS/PDADMAC) polyelectrolyte microcapsules, which supports at least six cell divisions and results in >40 × 106 cells mLcapsule−1 within less than 10 d. Inside the microcapsules, the T cells are suspended in a viscous SCS‐solution. The low molecular weight cut off (<10 000 Da) of the surrounding polyelectrolyte membrane assures that typical signaling molecules produced by the cells are retained, while nutrients and metabolites can pass. Expensive additives, such as interleukin‐2 (IL‐2), can be coencapsulated. Expansion then no longer requires specialized T‐cell media. Moreover, these results suggest that an SCS with a low degree of sulfation has biomimetic properties, representing an artificial extracellular matrix mimicking heparin sulfate.  相似文献   

15.
Poly(sodium 4-styrenesulfonate) (PSS)/poly(diallyldimethylammonium chloride) (PDADMAC) multilayers were treated with 1-5 M NaCl solutions, resulting in continuous changes in the physicochemical properties of the multilayers. Significant mass loss was observed when the salt concentration was higher than 2 M and reached as high as 72% in a 5 M NaCl solution. The disassembly occurred initially in the superficial layers and then developed in the bulk multilayers. For the multilayers with PDADMAC as the outmost layer, the molar ratio of PSS/PDADMAC was increased and the surface chemistry was changed from PDADMAC domination below 2 M NaCl to PSS domination above 3 M NaCl. Owing to the higher concentrations of uncompensated for polyelectrolytes at both lower and higher salt concentrations, the swelling ratio of the multilayers was decreased until reaching 3 M NaCl and then was increased significantly again. The salt-treated PSS/PDADMAC thin films are expected to show different behaviors in terms of the physical adsorption of various functional substances, cell adhesion and proliferation, and chemical reaction activity.  相似文献   

16.
The quartz crystal microbalance with dissipation technique (QCM‐D) and atomic force microscopy (AFM) have been employed to study the interaction of N‐tetradecyl trimethyl ammonium bromide (TdTmAB) with polyelectrolyte multilayers containing poly(sodium 4‐styrene sulfonate) (PSS) as the polyanion and either poly(allylamine hydrochloride) (PAH) or poly(diallyl dimethyl ammonium chloride) (PDADMAC) as the polycations. The multilayers were exposed to aqueous solutions of TdTmAB. This resulted in a selective removal of PDADMAC PSS layers while layers with PAH as polycation remained stable. It is suggested that PDADMAC/PSS multilayers can be employed as strippable protecting layers.

  相似文献   


17.
This paper compares the influence of the molecular weight of polylelectrolytes forming polyelectrolyte multilayers (PEM) on wood fibers on adhesion and paper strength. Sheets were made from fibers treated with poly(allylamine hydrochloride) (PAH)/poly(acrylic acid) (PAA) of molecular mass 70,000 and 240,000, respectively, and of poly(dimethyldiallylammonium chloride) (PDADMAC)/poly(styrene sulfonate) (PSS) of molecular mass 30,000 and 80,000, respectively. The results were compared to what has recently been reported for PEM formation on fibers using a low-molecular-mass combination of PAH and PAA and a high-molecular-mass combination of PDADMAC/PSS. There was a less significant improvement in the case of the low-molecular-mass PDADMAC/PSS and the high-molecular-mass PAH/PAA. The adsorbed amounts of PAH and PDADMAC were also determined, showing a lower adsorbed amount of the low-molecular-mass PAH than of the high-molecular-mass PDADMAC. The amount of low-molecular-mass PDADMAC was similar to that found for high-molecular-mass PDADMAC/PSS. Individual fibers were partly treated and studied, showing a less significant decrease in wettability with low-molecular-mass PDADMAC/PSS than with the high-molecular-mass combination. The effect of the molecular weight on the adhesion was discussed in terms of the structure and wettability of the PEMs.  相似文献   

18.
Dynamic mechanical analysis (DMA) was used to explore the thermomechanical properties of dried polyelectrolytes and polyelectrolyte complexes (PECs) with different thermal and humidity histories. Although differences in the amount of water remaining in polyelectrolytes and PECs were small for ambient versus dessicator storage, the properties of polyelectrolyte‐based materials were drastically different for different humidity histories. Glass transition temperatures (Tgs) of poly(diallyldimethylammonium chloride) (PDADMAC) were shown to vary by 100 °C, depending on humidity and thermal histories. These parameters also change glassy storage modulus values by 100%. Furthermore, we observe that dried PDADMAC is highly lossy. DMA of dried poly(styrene sulfonate) (PSS) was more complex and did not exhibit a glass transition in the tested range. DMA of a PEC of PDADMAC and PSS revealed a humidity history‐dependent water melt in the first heating cycle, as well as storage modulus values of dried and annealed PECs that only varied by 17–26% over a 275 °C temperature range. Based on these results, we report for the first time humidity history as controlling structure and properties of polyelectrolyte‐based materials. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 684–691  相似文献   

19.
The electrophoretic mobility and temperature-dependent particle size of poly(N-isopropylacrylamide) (PNiPAM) microgels after alternating adsorption of poly(diallyldimethylammonium chloride) (PDADMAC) and poly(sodium 4-styrenesulfonate) (PSS) have been determined. First a PNiPAM-co-acrylic acid (AAc) shell was added to the PNiPAM microgel, then PDADMAC and PSS were adsorbed alternately. The studies of the electrophoretic mobility revealed charge reversal when a polyelectrolyte (PE) layer was adsorbed. Particle size measurements revealed a strong influence of polyelectrolyte adsorption on the temperature-dependent particle swelling. The strong influence of the adsorbed polyelectrolyte on the particle size is in contrast to polyelectrolyte multilayer adsorption on rigid particles.  相似文献   

20.
Alternating adsorption of polyanions and polycations on porous supports provides a convenient way to prepare ion-selective nanofiltration membranes. This work examines optimization of ultrathin, multilayer polyelectrolyte films for monovalent/divalent cation separations relevant to water softening. Membranes composed of five bilayers of poly(styrene sulfonate)/poly(allylamine hydrochloride) (PSS/PAH) on porous alumina supports allow a solution flux of 0.85 m3/(m2 day) at 4.8 bar, and exhibit 95% rejection of MgCl2 along with a Na+/Mg2+ selectivity of 22. Similar results were obtained in Na+/Ca2+ separations. PSS/poly(diallyl-dimethylammonium chloride) (PDADMAC) films permit higher fluxes than PSS/PAH systems due to the higher swelling of films containing PDADMAC, but the Mg2+ rejection by PSS/PDADMAC membranes is less than 45%. However, capping PSS/PDADMAC films with a bilayer of PSS/PAH yields Mg2+ rejections and Na+/Mg2+ selectivities that are typical of pure PSS/PAH membranes. Separation performance can be optimized through control over deposition conditions (pH and supporting electrolyte concentration) and the charge of the outer layer since Donnan exclusion is a major factor in monovalent/divalent cation selectivity. Streaming potential measurements demonstrate that the magnitude of positive surface charge increases with increasing concentrations of Mg2+ in solution or when the outer polycation layer is deposited from a solution of high ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号