首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this paper, a mathematical model consisting of two harmful phytoplankton and zooplankton with discrete time delays is considered. We prove that a sequence of Hopf bifurcations occur at the interior equilibrium as the delay increases. Meanwhile, the phenomenon of stability switches is found under certain conditions. The direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions are determined by using the theory of normal form and center manifold. Numerical simulations are given to support the theoretical results.  相似文献   

2.
An eco-epidemiological delay model is proposed and analysed for virally infected, toxin producing phytoplankton (TPP) and zooplankton system. It is shown that time delay can destabilize the otherwise stable non-zero equilibrium state. The coexistence of all species is possible through periodic solutions due to Hopf bifurcation. In the absence of infection the delay model may have a complex dynamical behavior which can be controlled by infection. Numerical simulation suggests that the proposed model displays a wide range of dynamical behaviors. Different parameters are identified that are responsible for chaos.  相似文献   

3.
In this paper,the stability and the Hopf bifurcation of small-world networks with time delay are studied.By analyzing the change of delay,we obtain several sufficient conditions on stable and unstable properties.When the delay passes a critical value,a Hopf bifurcation may appear.Furthermore,the direction and the stability of bifurcating periodic solutions are investigated by the normal form theory and the center manifold reduction.At last,by numerical simulations,we further illustrate the effectiveness of theorems in this paper.  相似文献   

4.
We revisit Nicholson?s blowflies model with natural death rate incorporated into the delay feedback. We consider the delay as a bifurcation parameter and examine the onset and termination of Hopf bifurcations of periodic solutions from a positive equilibrium. We show that the model has only a finite number of Hopf bifurcation values and we describe how branches of Hopf bifurcations are paired so the existence of periodic solutions with specific oscillation frequencies occurs only in bounded delay intervals. The bifurcation analysis and the Matlab package DDE-BIFTOOL developed by Engelborghs et al. guide some numerical simulations to identify ranges of parameters for coexisting multiple attractive periodic solutions.  相似文献   

5.
In this paper, a SEIR epidemic model with nonlinear incidence rate and time delay is investigated in three cases. The local stability of an endemic equilibrium and a disease-free equilibrium are discussed using stability theory of delay differential equations. The conditions that guarantee the asymptotic stability of corresponding steady-states are investigated. The results show that the introduction of a time delay in the transmission term can destabilize the system and periodic solutions can arise through Hopf bifurcation when using the time delay as a bifurcation parameter. Applying the normal form theory and center manifold argument, the explicit formulas determining the properties of the bifurcating periodic solution are derived. In addition, the effect of the inhibitory effect on the properties of the bifurcating periodic solutions is studied. Numerical simulations are provided in order to illustrate the theoretical results and to gain further insight into the behaviors of delayed systems.  相似文献   

6.
In this paper, Hopf bifurcation for two-species Lotka–Volterra competition systems with delay dependence is investigated. By choosing the delay as a bifurcation parameter, we prove that the system is stable over a range of the delay and beyond that it is unstable in the limit cycle form, i.e., there are periodic solutions bifurcating out from the positive equilibrium. Our results show that a stable competition system can be destabilized by the introduction of a maturation delay parameter. Further, an explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by using the theory of normal forms and center manifolds, and numerical simulations supporting the theoretical analysis are also given.  相似文献   

7.
In this paper, we study a delayed diffusive predator-prey model with fear effect and Holling II functional response. The stability of the positive equilibrium is investigated. We find that time delay can destabilize the stable equilibrium and induce Hopf bifurcation. Diffusion may lead to Turing instability and inhomogeneous periodic solutions. Through the theory of center manifold and normal form, some detailed formulas for determining the of Hopf bifurcation are presented. Some numerical simulations are also provided.  相似文献   

8.
We proposed a nutrient-phytoplankton interaction model with a discrete and distributed time delay to provide a better understanding of phytoplankton growth dynamics and nutrient-phytoplankton oscillations induced by delay. Standard linear analysis indicated that delay can induce instability of a positive equilibrium via Hopf bifurcation. We derived the conditions guaranteeing the existence of Hopf bifurcation and tracked its direction and the stability of the bifurcating periodic solutions. We also obtained the sufficient conditions for the global asymptotic stability of the unique positive steady state. Numerical analysis in the fully nonlinear regime showed that the stability of the positive equilibrium is sensitive to changes in delay values under select conditions. Numerical results were consistent with results predicted by linear analysis.  相似文献   

9.
In order to investigate the impact of awareness programs and time delays on the cholera outbreaks, we propose a cholera epidemic model, incorporating awareness programs by media as a separate class and two time‐delay factors. The bifurcation theory is applied to explore the variety of dynamics of this model for various combinations of the delays when R0>1. Moreover, we analyze the direction, stability, and period of the bifurcating periodic solutions arising through Hopf bifurcation by using the normal form concept and the center manifold theory. Finally, we present numerical simulations to verify the main theoretical results.  相似文献   

10.
In this paper, a modified Holling-Tanner predator-prey model with time delay is considered. By regarding the delay as the bifurcation parameter, the local asymptotic stability of the positive equilibrium is investigated. Meanwhile, we find that the system can also undergo a Hopf bifurcation of nonconstant periodic solution at the positive equilibrium when the delay crosses through a sequence of critical values. In particular, we study the direction of Hopf bifurcation and the stability of bifurcated periodic solutions, an explicit algorithm is given by applying the normal form theory and the center manifold reduction for functional differential equations. Finally, numerical simulations supporting the theoretical analysis are also included.  相似文献   

11.
A Cohen-Grossberg neural network with discrete delays is investigated in this paper. The qualitative analysis is given for the system and it is found that the system undergoes a sequence of Hopf bifurcations by choosing the discrete time delay as a bifurcation parameter. Moreover, by applying the normal form theory and the center manifold theorem, the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions are obtained. Numerical simulations are given to illustrate the obtained results.  相似文献   

12.
In this paper, a two‐neuron network with both discrete and distributed delays is considered. With the corresponding characteristic equation analyzed, the local stability of the trivial equilibrium is investigated. With the discrete time delay taken as a bifurcation parameter, the existence of Hopf bifurcation is established. Moreover, formulae for determining the direction of Hopf bifurcation and the stability of bifurcating periodic solutions are derived. Finally, numerical simulations are carried out to illustrate the main results and further to exhibit that there is a characteristic sequence of bifurcations leading to a chaotic dynamics, which implies that the system admits rich and complex dynamics. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A three-dimensional enterprise competitive model with time delay is considered. Where the delay is regarded as bifurcation parameters. By analyzing the corresponding characteristic equation of positive equilibrium,the local stability of positive equilibrium is regarded. By using the normal form method and center manifold theorem, we give the formula for determining the direction of the Hopf bifurcation and the stability of bifurcating periodic solutions. Numerical simulations are shown to illustrate the obtained results.  相似文献   

14.
In this paper, a discrete-time Hopfield neural network with delay is considered. We give some sufficient conditions ensuring the local stability of the equilibrium point for this model. By choosing the delay as a bifurcation parameter, we demonstrated that Neimark–Sacker bifurcation (or Hopf bifurcation for map) would occur when the delay exceeds a critical value. A formula for determining the direction bifurcation and stability of bifurcation periodic solutions is given by applying the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical results are also provided.  相似文献   

15.
In this paper, we investigate a novel congestion control algorithm, i.e., exponential RED algorithm, with communication delay. We derive some necessary and sufficient conditions ensuring Hopf bifurcation to occur for this model. By choosing the delay as a bifurcation parameter, we demonstrated that Hopf bifurcation would occur when the delay exceeds a critical value. A formula for determining the bifurcation direction and stability of bifurcation periodic solutions is given by applying the normal form theory and the center manifold theorem. Some numerical simulations for justifying the theoretical results are also provided.  相似文献   

16.
By introducing discrete time delay into the model for producing 1,3-propanediol by microbial continuous fermentation, we consider the stability and Hopf bifurcation of the delay differential system. Through numerical simulations, we get the rule of branch value changing with parameter and draw the pictures of periodic solutions and phase diagrams with specified parameters. The effect of time delay suggests that the system can qualitatively describe oscillatory phenomena occurring in the experiment.  相似文献   

17.
In this paper, we consider a three‐dimensional viral model with delay. We first investigate the linear stability and the existence of a Hopf bifurcation. It is shown that Hopf bifurcations occur as the delay τ passes through a sequence of critical values. Then, using the normal form theory and center manifold reduction, we derive the explicit formulaes that determine the stability, the direction, and the period of bifurcating periodic solutions. Numerical simulations are carried out to illustrate the validity of the main results. Finally, some brief conclusions are given. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper focuses on the delay induced Hopf bifurcation in a dual model of Internet congestion control algorithms which can be modeled as a time-delay system described by a one-order delay differential equation (DDE). By choosing communication delay as the bifurcation parameter, we demonstrate that the system loses its stability and a Hopf bifurcation occurs when communication delay passes through a critical value. Moreover, the bifurcating periodic solution of the system is calculated by means of the perturbation method. Discussion of stability of the periodic solutions involves the computation of Floquet exponents by considering the corresponding Poincaré–Lindstedt series expansion. Finally, numerical simulations for verifying the theoretical analysis are provided.  相似文献   

19.
In this paper we give a detailed Hopf bifurcation analysis of a ratio-dependent predator–prey system involving two different discrete delays. By analyzing the characteristic equation associated with the model, its linear stability is investigated. Choosing delay terms as bifurcation parameters the existence of Hopf bifurcations is demonstrated. Stability of the bifurcating periodic solutions is determined by using the center manifold theorem and the normal form theory introduced by Hassard et al. Furthermore, some of the bifurcation properties including direction, stability and period are given. Finally, theoretical results are supported by some numerical simulations.  相似文献   

20.
In this paper, we consider a discrete food-limited population model with time delay. Firstly, the stability of the equilibrium of the system is investigated by analyzing the characteristic equation. By choosing the time delay as a bifurcation parameter, we prove that Neimark-Sacker bifurcations occur when the delay passes a sequence of critical values. Then the explicit algorithm for determining the direction of the Neimark-Sacker bifurcations and the stability of the bifurcating periodic solutions are derived. Finally, some numerical simulations are given to verify the theoretical analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号