首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A rapid and highly selective liquid chromatography–tandem mass spectrometric (LC‐MS/MS) method for determination of polygalasaponin F (PF) in rat plasma was developed and validated. The chromatographic separation was achieved on a reverse‐phase Zorbax SB‐C18 column (150 × 4.6 mm, 5 µm), using 2 mm ammonium acetate (pH adjusted to 6.0 with acetic acid) and acetonitrile (25:75, v/v) as a mobile phase at 30 °C. MS/MS detection was performed using an electrospray ionization operating in positive ion multiple reaction monitoring mode by monitoring the ion transitions from m/z 1091.5 → 471.2 (PF) and m/z 700.4 → 235.4 (internal standard), respectively. The calibration curve showed a good linearity in the concentration range 0.0544–13.6 µg/mL, with a limit of quantification of 0.0544 µg/mL. The intra‐ and inter‐day precisions were <9.7% in rat plasma. The method was validated as per US Food and Drug Administration guidelines and successfully applied to pharmacokinetic study of PF in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Xanthii Fructus is extensively used as an herbal medicine. Ingestion of this herb is associated with severe hepatotoxicity and nephrotoxicity. Atractyloside and carboxyatractyloside are two dominative toxic constituents in Xanthii Fructus. However, their pharmacokinetic study is lacking. In this study, a novel high‐performance liquid chromatography‐tandem mass spectrometry method was developed to simultaneously quantify the rat plasma concentrations of atractyloside and carboxyatractyloside. After protein precipitation, the analytes were chromatographic separated on a ZORBAX Eclipse Plus column (2.1 × 150 mm id, 5 µm) under gradient elute. In the negative electrospray ionization mode, the transitions at m/z 725.3→645.4 for atractyloside, m/z 769.3→689.4 for carboxyatractyloside, and m/z 479.2→121.1 for paeoniflorin (the internal standard) were acquired by multiple reaction monitoring. This analytical method showed good linearity over 1–500 ng/mL for atractyloside and 2–500 ng/mL for carboxyatractyloside with acceptable precision and accuracy. No matrix effect, instability and carryover occurred in the analysis procedure. The extraction recoveries were greater than 85.0%. This method was applied to a preliminary pharmacokinetic study by orally administering Xanthii Fructus extract (9 g/kg) to rats, which was useful to evaluate the role of these two compounds in Xanthii Fructus‐induced toxicity.  相似文献   

3.
A rapid, selective, and sensitive ultra‐high performance liquid chromatography‐tandem mass spectrometry method was developed for simultaneous determination of ferulic acid, paeoniflorin, and albiflorin, the major active constituents of Danggui‐Shaoyao‐San, in rat plasma using geniposide as the internal standard. The plasma samples were processed by protein precipitation with acetonitrile, and then separated on a Shim‐Pack XR‐ODS C18 column (75 mm × 3.0 mm, 2.2 μm) using gradient elution program with a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile at a flow rate of 0.4 mL/min. The detection was achieved on a 3200 QTRAP mass spectrometer equipped with electrospray ionization source in negative ionization mode. Quantification was performed using multiple reaction monitoring mode by monitoring the fragmentation of m/z 192.9→134.0 for ferulic acid, m/z 525.0→120.9 for paeoniflorin, m/z 525.2→121.0 for albiflorin, and m/z 433.1→225.1 for the internal standard, respectively. The calibration curve was linear in the range of 5–2500 ng/mL for all the three analytes (r ≥ 0.9972) with the lower limit of quantitation of 5 ng/mL. The intraday and interday precisions were below 12.1% for all the analytes in terms of relative standard deviation, and the accuracy was within ±11.5% in terms of relative error. The extraction recovery, matrix effect and stability were satisfactory in rat plasma. The validated method was successfully applied to a pharmacokinetic study of ferulic acid, paeoniflorin, and albiflorin after oral administration of Danggui‐Shaoyao‐San to rats.  相似文献   

4.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of etoricoxib in human plasma. Chromatography was performed on an Acquity UPLC HSS T3 column (1.8 μm, 50 × 2.1 mm), with a flow rate of 0.600 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate as the mobile phase. Detection was carried out on Triple QuadTM 5500 mass spectrometer under positive‐ion multiple reaction monitoring mode. The respective mass transitions used for quantification of etoricoxib and etoricoxib‐d3 were m/z 359.0 → 280.1 and m/z 362.0 → 280.2. Calibration curves were linear over the concentration range of 5–5000 ng/mL. The validated method was applied in the pharmacokinetic study of etoricoxib in Chinese healthy volunteers under fed and fasted conditions. After a single oral dose of 120 mg, the main pharmacokinetic parameters of etoricoxib in fasted and fed groups were respectively as follows: peak concentration, 2364.78 ± 538.01 and 1874.55 ± 367.90 ng/mL; area under the concentration–time curve from 0 to 120 h, 44,605.53 ± 15,266.66 and 43,516.33 ± 12,425.91 ng h/mL; time to peak concentration, 2.00 and 2.50 h; and half‐life, 24.08 ± 10.06 and 23.64± 6.72 h. High‐fat food significantly reduced the peak concentration of etoricoxib (p = 0.001) but had no effect on the area under the concentration–time curve.  相似文献   

5.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Canagliflozin is a novel, orally selective inhibitor of sodium‐dependent glucose co‐transporter‐2 (SGLT2) for the treatment of patients with type 2 diabetes mellitus. In this study, a validated liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the quantitative analysis of canagliflozin in a lower volume of rat plasma (0.1 mL) was established and applied to a pharmacokinetic study in rats. Following liquid–liquid extraction by tert‐butyl methyl ether, chromatographic separation of canagliflozin was performed on a Quicksorb ODS (2.1 mm i.d. × 150 mm, 5 µm size) using acetonitrile–0.1% formic acid (90:10, v/v) as the mobile phase at a flow rate of 0.2 mL/min. The detection was carried out using an API 3200 triple‐quadrupole mass spectrometer operating in the positive electrospray ionization mode. Selected ion monitoring transitions of m/z = 462.0 [M + NH4]+ → 191.0 for canagliflozin and m/z = 451.2 [M + H]+ → 71.0 for empagliflozin (internal standard) were obtained. The validation of the method was investigated, and it was found to be of sufficient specificity, accuracy and precision. Canagliflozin in rat plasma was stable under the analytical conditions used. This validated method was successfully applied to assess the pharmacokinetics of canagliflozin in rats using 0.1 mL rat plasma. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
A sensitive and accurate LC–MS/MS method was established for quantifying bisabolangelone in rat plasma and tissues. Bisabolangelone was isolated and purified from Angelicae Pubescentis Radix. The pharmacokinetic and tissue distribution of bisabolangelone after administration to rat was performed by LC–MS/MS. Separation was carried out on a C8 (4.6 × 100 mm, 1.8 μm) column. The MS/MS transitions of bisabolangelone and tussilagone (internal standard) were set at m/z 249.1 → 109.1 and m/z 391.4 → 217.4, respectively. The lower limit of quantification in plasma and other tissues ranged from 1 to 4 ng/mL. The biosamples were prepared using protein precipitation method with acetonitrile. The recovery was >92%. The results showed that values of maximum concentrations and area under the curve depended linearly on the studied doses (2.5, 5 and 7.5 mg/kg body weight). The other ingredients in Angelicae Pubescentis Radix extract possibly reduce the absorption of bisabolangelone in rat. Tissue distribution revealed that bisabolangelone was widely distributed in vivo. The highest and lowest concentrations of bisabolangelone were found in the stomach and in the brain, respectively. It was concluded that the newly established HPLC–MS/MS method was suitable to describe the pharmacokinetic characteristics of bisabolangelone in rat after administration.  相似文献   

8.
A simple, high‐throughput and specific high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated according to the FDA guidelines for quantification of ulifloxacin in rat and rabbit plasma. The analyte was separated on a Peerless basic C18 column (33 × 4.6 mm, 3 µm) with an isocratic mobile phase of methanol–water containing formic acid (0.5%, v/v; 9:1, v/v) at a flow rate of 0.5 mL/min. The MS/MS detection was carried out by monitoring the fragmentation of m/z 350.500 → 248.500 for ulifloxacin and m/z 332.400 → 231.400 for ciprofloxacin (internal standard; IS) on a triple quadrupole mass spectrometer. The response to ulifloxacin was linear over the range 0.010–2.500 µg/mL in both plasma. The limit of detection and lower limit of quantification of ulifloxacin were determined in both species to be 0.0025 and 0.010 µg/mL, respectively. The method was successfully applied to quantitatively assess the toxicokinetics of ulifloxacin in rat and rabbit following a single 400 mg/kg (in rat) and 200 mg/kg (in rabbit) oral dose of the prulifloxacin. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive and fast high‐performance liquid chromatography–electrospray ionization–MS/MS method for the simultaneous quantitation of levodopa and carbidopa in human plasma was developed and validated. A simple protein precipitation step with perchloric acid was used for the cleanup of plasma, and methyldopa was added as an internal standard. The analyses were carried out using an ACE C18 column (50 × 4.6 mm i.d.; 5 µm particle size) and a mobile phase consisting of 0.2% formic acid and acetonitrile (90:10). The triple‐quadrupole mass spectrometer equipped with an electrospray source in positive mode was set up in the selective reaction monitoring mode to detect the ion transitions m/z 198.1 → m/z 107.0, m/z 227.2 → m/z 181.0, and m/z 212.1 → m/z 139.2 for levodopa, carbidopa, and methyldopa, respectively. The method was validated and proved to be linear, accurate, and precise over the range 50–5000 ng/mL for levodopa and 3–600 ng/mL for carbidopa. The proposed method was successfully applied in a pharmacokinetic study with a levodopa/carbidopa tablet formulation in healthy volunteers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Levetiracetam is an antiepileptic drug for the treatment of psychiatric patients. In this study, a selective, straightforward, and rapid online heart‐cutting liquid chromatography method was developed for the therapeutic drug monitoring of levetiracetam. This method allows for the determination of levetiracetam in human plasma without complex sample preparation. The mobile phases consisted of 30 mM aq. orthophosphoric acid solution/methanol (70:30) at a flow rate of 1 mL/min for the first system and 10 mM aq. orthophosphoric acid solution/methanol (55:45) at a flow rate of 1 mL/min for the second system. The first separation was carried out on a GL Sciences Intersil ODS‐3 column (4.6 mm × 150 mm, 3 µm) and the second separation was carried out on a Restek Ultra PFPP column (4.6 mm × 150 mm, 5 µm). The detection was carried out at 205 nm for both systems. The method was validated for selectivity and linearity, which were in the 6–60 µg/mL range. Intra‐ and interassay accuracies were <112.6%, and the intra‐ and interassay precisions were <6.4% for all quality control samples. The lower limit of quantitation was 6 µg/mL. The developed method was successfully applied for therapeutic drug monitoring of plasma samples from patients.  相似文献   

11.
A selective and sensitive liquid chromatography tandem mass spectrometry method (LC‐MS/MS) was developed and validated for the determination of cefdinir in rat plasma and urine. Following a simple protein precipitation using methanol, chromatographic separation was achieved with a run time of 10 min using a Synergi 4 µ polar‐RP 80A column (150 × 2.0 mm, 4 µm) with a mobile phase consisting of 0.1% formic acid in water and methanol (65:35, v/v) at a flow rate of 0.2 mL/min. The protonated precursor and product ion transitions for cefdinir (m/z 396.1 → 227.2) and cefadroxil, an internal standard (m/z 364.2 → 208.0) were monitored in the multiple reaction monitoring in positive ion mode. The calibration curves for plasma and urine were linear over the concentration range 10–10,000 ng/mL. The lower limit of quantification was 10 ng/mL. All accuracy values were between 95.1 and 113.0% and the intra‐ and inter‐day precisions were <13.0% relative standard deviation. The stability under various conditions in rat plasma and urine was also found to be acceptable at three concentrations. The developed method was applied successfully to the pharmacokinetic study of cefdinir after oral and intravenous administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A sensitive, rapid and specific high‐performance liquid chromatography tandem mass spectrometry method (HPLC‐MS/MS) was developed to determine ecliptasaponin A in rat plasma and tissues after oral administration. Ginsenoside Rg1 was used as the internal standard (IS). The plasma and tissues samples were prepared by liquid‐liquid extraction with ethyl acetate and separated on an Eclipse Plus C18 column (2.1 mm × 150 mm, 5 µm) at a flow rate of 0.4 mL/min using acetonitrile and water (containing 0.05% acetic acid) as the mobile phase. The tandem mass detection was carried out with eletrospray ionization in negative mode. Quantification was performed by using multiple reaction monitoring (MRM), which monitored the fragmentation of m/z 633.4→587.2 for ecliptasaponin A and m/z 859.4→637.4 for the IS. The calibration curves obtained were linear in different matrices, and the lower limit of quantification (LLOQ) achieved was 0.5 ng/mL both for rat plasma and tissues. The intra‐ and inter‐day precisions were below 15%. This method was successfully applied to pharmacokinetic study of ecliptasaponin A in rat plasma and tissues after oral administration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
A rapid and sensitive method based on liquid chromatography/tandem mass spectrometry (LC/MS/MS) for the determination of echinacoside in rat plasma was established and fully validated. A single step of liquid–liquid extraction with n‐butanol was utilized. Chromatographic separation of the analyte and the internal standard (IS), chlorogenic acid, from the sample matrix was performed using a Capcell‐MG C18 analytical column (100 2.0 mm × 5 µm), with a gradient of acetonitrile and water containing 0.1% acetic acid as the mobile phase. Detection was performed on a triple quadrupole tandem mass spectrometer equipped with electrospray ionization source operated in negative ion selected reaction monitoring mode. The method was linear in the concentration range 10–2500 ng/mL. The deviations of both intra‐ and inter‐day precisions (RSD) were 7.1% and the assay accuracies were within 99.2–106.5%. Echinacoside proved to be stable during sample storage, preparation and analysis when an antioxidant solution was used. The method was successfully applied to a pharmacokinetic study in rats after an intragastric administration of echinacoside (100 mg/kg). With the lower limit of quantification at 10 ng/mL, this method proved to have sufficient selectivity, sensitivity and reproducibility for the pharmacokinetic study of echinacoside. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive HPLC–MS/MS method was established for the quantification of ceftriaxone sodium (CFT) and lidocaine HCl (LDC) in human plasma utilizing cefixime (CFX) and tadalafil (TDA) as internal standards. The analytes were extracted from human plasma by protein precipitation using acetonitrile. Chromatographic separation was performed on Kinetex C18 (50.0 × 4.6 mm, 5 μm particle size) column with methanol–0.01 M ammonium acetate pH 6.4 (70: 30, v/v) as mobile phase. Multiple reaction monitoring involving the transitions 555.10 → 396.20, 235.20 → 86.00, 454.20 → 284.80 and 390.20 → 268.20 was utilized to quantify CFT, LDC, CFX and TDA, respectively, using a triple quadrupole mass spectrometer which was operated in positive ion mode. The method revealed linearity in the concentration range of 3.0–300.0 μg/mL for CFT and 3.0–300.0 ng/mL for LDC. The validation of the method was achieved in accordance to the US Food and Drug Administration guidelines. A pharmacokinetic study was performed on healthy Egyptian volunteers after intramuscular injection of sterile ceftriaxone sodium (1 g CFT dissolved in 3.5 mL of 1% LDC) after approval from the ethics committee. The pharmacokinetic parameters were: Cmax 141.15 ± 39.84 (μg/mL) and 55.02 ± 9.36 (ng/mL); tmax (h) 2.50 ± 0.50 and 1.5 ± 0.50; t½ (h) 7.30 ± 2.98 and 4.23 ± 1.96; and Kel (h−1) 0.10 ± 0.04 and 0.20 ± 0.13 for CFT and LDC, respectively.  相似文献   

15.
Imidol hydrochloride is a novel drug for the treatment of hepatitis B virus infection. A simple, special and sensitive solid‐phase extraction liquid chromatography–tandem mass spectrometry method for determination of imidol in human plasma and urine was developed for the first time and applied to a pharmacokinetic study. The chromatographic separation was achieved on a C18 column (50 × 2.1 mm, 3.5 µm) using gradient elution with acetonitrile and water both containing 0.1% acetic acid at a flow rate of 0.25 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via a positive eletrospray ionization source. The mass transition pairs of m/z 517.8 → 325 and m/z 298 → 174 were used to detect imidol and the (?)‐clausenamide (internal standard), respectively. The retention times of imidol and (?)‐clausenamide were 2.5 and 2.7 min, respectively. Linearity, accuracy, precision, recovery, matrix effect, dilution test and stability were evaluated during method validation over the range of 0.2–500 ng/mL in human plasma and 0.5–500 ng/mL in urine. The method was successfully applied to a clinical pharmacokinetic study of imidol in healthy volunteers following oral administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Delafloxacin is a novel fluoroquinolone antibiotic that was approved by the European Medicine Agency to treat bacterial infections of the skin and underlying tissues, and community-acquired pneumonia. Despite being in the market since 2019 in the European Union, there is no published liquid chromatography-fluorescence method for delafloxacin quantification in biological samples. A novel, rapid, and sensitive high-performance liquid chromatographic method was developed to determine delafloxacin in human plasma using its native fluorescence. Plasma delafloxacin concentrations were determined by reverse-phase chromatography with fluorescence detection at 405/450 nm of excitation/emission wavelengths. Delafloxacin was separated on a Kromasil C18 column 250 × 4.6 mm id, 5 µm using isocratic elution. The mobile phase was a mixture of 0.05% trifluoroacetic acid/acetonitrile (52/48). Retention times were 5.4 and 11.6 min for delafloxacin and valsartan (internal standard), respectively. Regression calibration curves were linear over the range of 0.1–2.5 µg/mL. The lower limit of detection was 0.05 µg/mL, and the lower limit of quantification was 0.1 µg/mL. Accuracy and precision were always <11%, and the limit of quantification was <16%. Mean recovery was 98.3%. This method can be applied to determine delafloxacin in human plasma and could be useful to perform pharmacokinetic studies.  相似文献   

17.
A sensitive and selective LC‐MS/MS method for the determination of agomelatine in human plasma was developed and validated. After simple liquid–liquid extraction, the analytes were separated on a Zorbax SB‐C18 column (150 × 2.1 mm i.d., 5 µm) with an isocratic mobile phase consisting of 5 mm ammonium acetate solution (containing 0.1% formic acid) and methanol (30:70, v/v) at a flow‐rate of 0.3 mL/min. The MS acquisition was performed in multiple reaction monitoring mode with a positive electrospray ionization source. The mass transitions monitored were m/z 244.1 → 185.3 and m/z 285.2 → 193.2 for agomelatine and internal standard, respectively. The methods were validated for selectivity, carry‐over, matrix effects, calibration curves, accuracy and precision, extraction recoveries, dilution integrity and stability. The validated method was successfully applied to a pharmacokinetic study of agomelatine in Chinese volunteers following a single oral dose of 25 mg agomelatine tablet. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid, selective and sensitive method using UPLC‐MS/MS was first developed and validated for quantitative analysis of koumine in rat plasma. A one‐step protein precipitation with methanol was employed as a sample preparation technique. Plasma samples were separated on an Acquity UPLC BEH C18 column (50 × 2.1 mm, i.d. 1.7 µm) with a gradient mobile phase consisting of methanol with 0.1% (v/v) formic acid and water containing 0.1% (v/v) formic acid at a flow rate of 0.3 mL/min. Detection and quantification were performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring mode via positive eletrospray ionization. Good linearity (r > 0.9997) was achieved using weighted (1/x2) least squares linear regression over a concentration range of 0.025–15 µg/mL with a lower limit of quantification of 0.025 µg/mL for koumine. The intra‐ and inter‐ precisions (relative standard deviation) of the assay at all three quality control samples were 5.6–14.1% with an accuracy (relative error) of 5.0–14.0%, which meets the requirements of the US Food and Drug Administration guidance. This developed method was successfully applied to an in vivo pharmacokinetic study in rats after a single intravenous dose of 20 mg/kg koumine. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A selective liquid chromatographic–mass spectrometric method has been developed and validated for simultaneous determination of senkyunolide I (SEI) and senkyunolide H (SEH) from Chuanxiong Rhizoma in rat plasma. Plasma samples were extracted by liquid–liquid extraction with ethyl acetate and separated on a Kromasil C18 column (250 × 4.6 mm, 5 µm), with methanol–water (55:45, v/v) as mobile phase. The linear range was 0.05–25 µg/mL for SEI and 0.01–5.0 µg/mL for SEH, with lower limits of quantitation of 0.05 and 0.01 µg/mL, respectively. Intra‐ and inter‐day precision were within 10.0 and 9.8%, and the accuracies (relative errors) were <9.6 and 5.9%, with the mean extraction recoveries 81.0–86.6 and 80.5–85.0% for the two anayltes, respectively. The validated method was successfully applied to a comparative pharmacokinetic study of SEI and SEH in normal and migrainous rats after oral administration of Chuanxiong Rhizoma extract. The results indicated that there were obvious differences between normal and migrainous rats in the pharmacokinetic behavior after oral administration of Chuanxiong Rhizoma extract. The absorption of SEI and SEH were significantly increased in migrainous rats compared with normal rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Two high‐performance liquid chromatography–tandem mass spectrometry methods were developed and validated for the quantification of edaravone (method A) or taurine (method B) in human plasma. After protein precipitation, separations were achieved on an Ultimate XB‐C8 (2.1 × 50 mm, 3.0 µm) column for edaravone and a ZORBAX SB‐Aq column (2.1 × 100 mm, 3.5 µm) for taurine, respectively. The detection used electrospray ionization source via multiple reaction monitoring in positive‐ion mode for edaravone and negative‐ion mode for taurine, respectively. The lower limits of quantification were 10.0 ng/mL for edaravone and 3.00 μg/mL for taurine. The selectivity, accuracy, and precision of the methods were all within acceptable limits. Two methods were successfully applied to a drug–drug interaction study and a pharmacokinetic study of edaravone and taurine in healthy Chinese volunteers after intravenous infusion of single or compound injection. The results showed that co‐administration of edaravone with taurine increased the Cmax and AUC0‐24 of taurine in human plasma while taurine did not affect the systemic exposure of edaravone. Edaravone and taurine have the dose‐dependent pharmacokinetic profiles in human.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号