首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A rapid and sensitive liquid chromatography hyphenated with electrospray ionization tandem mass spectrometric method (LC–ESI–MS/MS) was developed and validated for simultaneous determination of evobrutinib and evobrutinib‐diol in dog plasma. The plasma sample was processed using acetonitrile and chromatographic separation was carried out on a Waters Acquity BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase was composed of 0.1% formic acid and acetonitrile, with an optimized gradient elution at a flow rate of 0.4 mL/min. Detection was accomplished in selective reaction monitoring mode via electrospray ionization interface operated in positive ion mode. The precursor‐to‐product transitions for quantification were m/z 430.2 → 98.1 for evobrutinib, m/z 464.2 → 98.1 for evobrutinib‐diol and m/z 441.2 → 138.1 for ibrutinib (internal standard). The developed assay was linear over the tested concentration ranges with correlation coefficient >0.995. The LLOQ was 0.1 ng/mL for both analytes. The inter‐ and intra‐day precisions were <9.65% and the accuracy ranged from ?3.94 to 6.37%. The extraction recovery was >85.41% and no significant matrix effect was observed. The developed assay was successfully applied to the pharmacokinetic study of evobrutinib and evobrutinib‐diol in dogs after oral administration of evobrutinib at a single dose of 5 mg/kg.  相似文献   

2.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed and validated for investigating the pharmacokinetics of umbelliferone, apigenin, genkwanin and hydroxygenkwanin after oral administration of Daphne genkwa extract. Plasma samples were treated by protein precipitation with acetonitrile. Analytes were detected by triple‐quadrupole MS/MS with an ESI source in negative selection reaction monitoring mode. The transitions of m/z 161 → 133 for umbelliferone, m/z 269 → 117 for apigenin, m/z 283 → 268 for genkwanin and m/z 299 → 284 for hydroxygenkwanin were confirmed for quantification. Chromatographic separation was conducted using an Eclipse XDB‐C18 column, and the applied isocratic elution program allowed for simultaneous determination of the four analytes for a total run time of 2.5 min. The linearity was validated over the plasma concentration ranges of 1.421–1421 ng/mL for umbelliferone, 0.845–845 ng/mL for apigenin, 1.025–1025 ng/mL for genkwanin and 0.845–845 ng/mL for hydroxygenkwanin. The extraction recovery rate was >82.7% for each analyte. No apparent matrix effect was observed during the bioanalysis. After full validation, the proposed method was successfully applied to compare the pharmacokinetics of these analytes between normal and arthritic rats.  相似文献   

3.
In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2–500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and ?80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half‐life and area under the concentration–time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, sensitive and reproducible LC–MS/MS method was developed and validated to determine iguratimod in human plasma. Sample preparation was achieved by protein precipitation with acetonitrile. Chromatographic separation was operated on an Ultimate® XB‐C18 column (2.1 × 50 mm, 3.5 μm, Welch) with a flow rate of 0.400 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate and 0.1% formic acid as the mobile phase. The detection was performed on a Triple Quad™ 5500 mass spectrometer coupled with an electrospray ionization interface under positive‐ion multiple reaction monitoring mode with the transition ion pairs of m/z 375.2 → 347.1 for iguratimod and m/z 244.3 → 185.0 for agomelatine (the internal standard), respectively. The method was linear over the range of 5.00–1500 ng/mL with correlation coefficients ≥0.9978. The accuracy and precision of intra‐ and inter‐day, dilution accuracy, recovery and stability of the method were all within the acceptable limits and no matrix effect or carryover was observed. As a result, the main pharmacokinetic parameters of iguratimod were as follows: Cmax, 1074 ± 373 ng/mL; AUC0–72, 13591 ± 4557 ng h/mL; AUC0–∞, 13,712 ± 4613 ng h/mL; Tmax, 3.29 ± 1.23 h; and t1/2, 8.89 ± 1.23 h.  相似文献   

5.
The aim of this study was to establish and validate a rapid, selective and reliable ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) for simultaneous quantitations of morin and morusin, and to investigate their pharmacokinetics difference between normal and diabetic rats after oral administration. Plasma samples were pretreated via protein precipitation with acetonitrile. Genkwanin was used as internal standard (IS). Analytes and IS were separated on a Thermo Hypersil Gold C18 column (50 × 4.6 mm, 3 μm) using gradient elution. The mobile phase consisted of acetonitrile and 0.1% formic acid in water at a flow rate of 0.5 mL/min. Mass spectrometry detection was carried out by means of negative electrospray ionization source and multipe‐reaction monitoring mode. The transitions of m/z 300.9 → 151.2 for morin, m/z 419.2 → 297.1 for morusin and m/z 283.1 → 268.2 for IS were chosen for quantification. Calibration curves were linear in the range of 1.01–504.2 ng/mL (r2 ≥ 0.99) for morin and 1.02–522.3 ng/mL (r2 ≥ 0.99) for morusin. The lower limit of quantification was 1.02 ng/mL for morin and 1.05 ng/mL for morusin. The extraction recovery was >85.1% for each analyte. No obvious matrix effect was observed under the present UPLC–MS/MS conditions during all of the bioanalysis. The stability study demonstrated that morin and morusin remained stable during the whole analytical procedure. The method was successfully applied to support the pharmacokinetic comparisons of morin and morusin between normal and diabetic rats.  相似文献   

6.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

7.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water–methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor–product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50–30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra‐ and inter‐day precisions were <7.9% and the accuracy (relative error) was within ±3.5%. The validated method was successfully applied to investigate the pharmacokinetics of mesalazine in healthy beagle dogs after rectal administration of mesalazine suppository. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Status epilepticus (SE) is considered the second most frequent neurological emergency. Its therapeutic management is performed using sequential antiepileptic drug regimens. Diazepam (DIA), midazolam (MID), phenytoin (PHT) and phenobarbital (PB) are four drugs of different classes used sequentially in the management of SE. A sensitive, selective, accurate and precise method was developed and validated for simultaneous determination of the four antiepileptic drugs in human plasma. Their separation and quantification were achieved using ultra‐performance liquid chromatography (UPLC) with mass detection using carbamazepine as internal standard (IS). For the first three drugs and the IS, UPLC–MS/MS with electrospray ionization working in multiple reaction monitoring mode was used at the following transitions: m/z 285 → 193 for DIA; m/z 326 → 291 for MID; m/z 253 → 182 for PHT; and m/z 237 → 194, 237 → 192 for IS. For the fourth drug (PB), a molecular ion peak of PB [M + H] + at m/z 233 was used for its quantitation. The method was linear over concentration ranges 5–500 ng/mL for DIA and MID and 0.25–20 μg/mL for PHT and PB. Bioanalytical validation of the developed method was carried out according to European Medicines Agency guidelines. The developed method can be applied for routine drug analysis, therapeutic drug monitoring and bioequivalence studies.  相似文献   

9.
A simple and sensitive analytical method based on ultraperformance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) has been developed for determination of moclobemide in human brain cell monolayer as an in vitro model of blood–brain barrier. Brucine was employed as the internal standard. Moclobemide and internal standard were extracted from cell supernatant by ethyl acetate after alkalinizing with sodium hydroxide. The UPLC separation was performed on an Acquity UPLCTM BEH C18 column (50 × 2.1 mm, 1.7 µm, Waters, USA) with a mobile phase consisting of methanol–water (29.5:70.5, v/v); the water in the mobile phase contained 0.05% ammonium acetate and 0.1% formic acid. Detection of the analytes was achieved using positive ion electrospray via multiple reaction monitoring mode. The mass transitions were m/z 269.16 → 182.01 for moclobemide and m/z 395.24 → 324.15 for brucine. The extraction recovery was 83.0–83.4% and the lower limit of quantitation (LLOQ) was 1.0 ng/mL for moclobemide. The method was validated from LLOQ to 1980 ng/mL with a coefficient of determination greater than 0.999. Intra‐ and inter‐day accuracies of the method at three concentrations ranged from 89.1 to 100.9% for moclobemide with precision of 1.1–9.6%. This validated method was successfully applied to bidirectional transport study of moclobemide blood–brain barrier permeability. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A selective, sensitive and rapid high‐performance liquid chromatography–tandem mass spectrometry (HPLC‐MS/MS) method was developed and validated to determine metformin and glipizide simultaneously in human plasma using phenacetin as internal standard (IS). After one‐step protein precipitation of 200 μL plasma with methanol, metformin, glipizide and IS were separated on a Kromasil Phenyl column (4.6 × 150 mm, 5 µm) at 40°C with an isocratic mobile phase consisting of methanol–10 mmol/L ammonium acetate (75:25, v/v) at a flow rate of 0.35 mL/min. Electrospray ionization source was applied and operated in the positive mode. Multiple reaction monitoring using the precursor → product ion combinations of m/z 130 → m/z 71, m/z 446 → m/z 321 and m/z 180 → m/z 110 were used to quantify metformin, glipizide and IS, respectively. The linear calibration curves were obtained over the concentration ranges 4.10–656 ng/mL for metformin and 2.55–408 ng/mL for glipizide. The relative standard deviation of intra‐day and inter‐day precision was below 10% and the relative error of accuracy was between ?7.0 and 4.6%. The presented HPLC‐MS/MS method was proved to be suitable for the pharmacokinetic study of metformin hydrochloride and glipizide tablets in healthy volunteers after oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
A rapid and sensitive LC‐MS/MS method was developed for the determination of linarin in small‐volume rat plasma and tissue sample. Sample preparation was employed by the combination of protein precipitation (PPT) and liquid–liquid extraction (LLE) to allow measurement over a 5‐order‐of‐magnitude concentration range. Fast chromatographic separation was achieved on a Hypersil Gold column (100 × 2.1 mm i.d., 5 µm). Mass spectrometric detection was achieved using a triple‐quadrupole mass spectrometer equipped with an electrospray ionization interface operating in positive ionization mode. Quantification was performed using selected reaction monitoring of precursor‐product ion transitions at m/z 593 → 285 for linarin and m/z 447 → 271 for baicalin (internal standard). The total run time was only 2.8 min per sample. The calibration curves were linear over the concentration range of 0.4–200 µg/mL for PPT and 0.001–1.0 µg/mL for LLE. A lower limit of quantification of 1.0 ng/mL was achieved using only 20 μL of plasma or tissue homogenate. The intra‐ and inter‐day precisions in all samples were ≤14.7%, while the accuracy was within ±5.2% of nominal values. The validated method has been successfully applied to pharmacokinetic and tissue distribution study of linarin. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Nitazoxanide (NTZ) is a broad‐spectrum antimicrobial agent. Tizoxanide (T) and tizoxanide glucuronide (TG) are the major circulating metabolites after oral administration of NTZ. A rapid and specific LC–MS/MS method for the simultaneous quantification of T and TG in mouse plasma was developed and validated. A simple acetonitrile‐induced protein precipitation method was employed to extract two analytes and the internal standard glipizide from 50 μL of mouse plasma. The purified samples were resolved using a C18 column with a mobile phase consisting of acetonitrile and 5 mm ammonium formate buffer (containing 0.05% formic acid) following a gradient elution. An API 3000 triple quadrupole mass spectrometer was operated under multiple reaction‐monitoring mode with electrospray ionization. The precursor‐to‐product ion transitions m/z 264 → m/z 217 for T and m/z 440 → m/z 264 for TG were used for quantification. The developed method was linear in the concentration ranges of 1.0–500.0 ng/mL for T and 5.0–1000.0 ng/mL for TG. The intra‐ and inter‐day precision and accuracy of the quality control samples at low, medium and high concentrations exhibited an RSD of <13.2% and the accuracy values ranged from ?9.6 to 9.3%. We used this validated method to study the pharmacokinetics of T and TG in mice following oral administration of NTZ. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A selective, sensitive and rapid liquid chromatography–tandem mass spectrometry (LC–MS/MS) method was developed and validated for the determination of tigecycline (TGC) in human plasma, using tigecycline‐d9 as an internal standard (IS). Analytical samples were prepared using a protein precipitation method coupled with a concentration process. The analyte and IS were separated on a reversed‐phase Waters Acquity UPLC® BEH‐C18 column (2.1 × 50 mm i.d., 1.7 μm) with a flow rate of 0.25 mL/min. The mobile phase consisted of water, containing 0.2% formic acid (v/v) with 10 mm ammonium formate (A) and acetonitrile (B). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 586.2 → 513.1 and m/z 595.1 → 514.0 for TGC and IS, respectively. The linearity of the method was in the range of 10–5000 ng/mL. Intra‐ and inter‐batch precision (CV) for TGC was <9.27%, and the accuracy ranged from 90.06 to 107.13%. This method was successfully applied to the analysis of samples from hospital‐acquired pneumonia patients treated with TGC, and a validated population pharmacokinetic model was established. This developed method could be useful to predict pharmacokinetics parameters and valuable for further pharmacokinetics/pharmacodynamics studies.  相似文献   

14.
A selective, rapid, and sensitive liquid chromatography–tandem mass spectrometry(LC‐MS/MS) method was developed and validated for the determination of letrozole (LTZ) in human plasma, using anastrozole as internal standard (IS). Sample preparation was performed by one‐step protein precipitation with methanol. The analyte and IS were chromatographed on a reversed‐phase YMC‐ODS‐C18 column (2.0 × 100 mm i.d., 3 µm) with a flow rate of 0.3 mL/min. The mobile phase consisted of water containing 0.1% formic acid (v/v) and methanol containing 0.1% formic acid (v/v). The mass spectrometer was operated in selected reaction monitoring mode through electrospray ionization ion mode using the transitions of m/z 286.2 → 217.1 for LTZ and m/z 294.1 → 225.1 for IS, respectively. The method was validated for selectivity, linearity, lower limit of quantitation, precision, accuracy, matrix effects and stability in accordance with the US Food and Drug Administration guidelines. Linear calibration curves were 1.0–60.0 ng/mL. Intra‐ and inter‐batch precision (CV) for LTZ were <9.34%, and the accuracy ranged from 97.43 to 105.17%. This method was successfully used for the analysis of samples from patients treated with LTZ in the dose of 2.5 mg/day. It might be suitable for therapeutic drug monitoring of these patients and contribute to predict the risk of adverse reactions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
A protein precipitation method for the determination of clobazam (CLB) and its major active metabolite N-desmethylclobazam (N-CLB) in human plasma by liquid chromatography tandem mass spectrometry (LC–MS/MS) was established. CLB and N-CLB were extracted from human plasma samples by protein precipitation with methanol. Analyte separation was done using a Phenomenex Kinetex™ Biphenyl (50 × 2.1 mm, 1.7 μm) column using isocratic elution with a mobile phase of 5 mm ammonium formate with 0.01% ammonium hydroxide (40%) and methanol (60%) at a flow rate of 0.4 mL/min and an injection volume of 10 μL. The detection was performed on a triple quadrupole mass spectrometer in multiple reaction monitoring mode to monitor the precursor-to-product ion transitions of m/z 301.1 → 259.0, 306.0 → 263.9 for CLB and CLB-D5 and 287.0 → 245.0, 292.0 → 250.0 for N-CLB and N-CLB-D5 in positive electrospray ionization mode, respectively. The method was validated over a concentration range of 2.0–750 ng/mL for CLB and 0.7–200 ng/mL for N-CLB on SCIEX Triple Quad 4500 MS System. Total run time was 5 min. This method has been designed for bioequivalence study for formulations containing 20 mg of CLB.  相似文献   

16.
A highly sensitive, rapid assay method has been developed and validated for the estimation of bicalutamide in mouse plasma using liquid chromatography coupled to tandem mass spectrometry with electrospray ionization in the negative‐ion mode. The assay procedure involves extraction of bicalutamide and tolbutamide (internal standard, IS) from mouse plasma with a simple protein precipitation method. Chromatographic separation was achieved using an isocratic mobile phase (0.2% formic acid:acetonitrile, 35:65, v/v) at a flow rate of 0.5 mL/min on an Atlantis dC18 column (maintained at 40 ± 1°C) with a total run time of 3.0 min. The MS/MS ion transitions monitored were m/z 428.9 → 254.7 for bicalutamide and m/z 269.0 → 169.6 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 1.04 ng/mL and the linearity range extended from 1.04 to 1877 ng/mL. The intra‐ and inter‐day precisions were in the ranges of 0.49–4.68 and 2.62–4.15, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
A high‐throughput and sensitive liquid chromatography–tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the determination of flunarizine in human plasma. Liquid–liquid extraction under acidic conditions was used to extract flunarizine and flunarizine‐d8 from 100 μL human plasma. The mean extraction recovery obtained for flunarizine was 98.85% without compromising the sensitivity of the method. The chromatographic separation was performed on Hypersil Gold C18 (50 × 2.1 mm, 3 μm) column using methanol–10 mm ammonium formate, pH 3.0 (90:10, v/v) as the mobile phase. A tandem mass spectrometer (API‐5500) equipped with an electrospray ionization source in the positive ion mode was used for detection of flunarizine. Multiple reaction monitoring was selected for quantitation using the transitions, m/z 405.2 → 203.2 for flunarizine and m/z 413.1 → 203.2 for flunarizine‐d8. The validated concentration range was established from 0.10 to 100 ng/mL. The accuracy (96.1–103.1%), intra‐batch and inter‐batch precision (CV ≤ 5.2%) were satisfactory and the drug was stable in human plasma under all tested conditions. The method was used to evaluate the pharmacokinetics of 5 and 10 mg flunarizine tablet formulation in 24 healthy subjects. The pharmacokinetic parameters Cmax and AUC were dose‐proportional.  相似文献   

18.
In this study, a new LC‐ESI‐MS/MS‐based method was validated for the quantitation of hemslecin A in rhesus monkey plasma using otophylloside A as internal standard (IS). Hemslecin A and the IS were extracted from rhesus monkey plasma using liquid–liquid extraction as the sample clean‐up procedure, and were subjected to chromatography on a Phenomenex Luna CN column (150 × 2.0 mm, 3.0 µm) with the mobile phase consisting of methanol and 0.02 mol/mL ammonium acetate (55:45, v/v) at a flow rate of 0.2 mL/min. Detection was performed on an Agilent G6410B tandem mass spectrometer by positive ion electrospray ionization in multiple reaction monitoring mode, monitoring the transitions m/z 580.5 [M + NH4]+ → 503.4 and m/z 518.2 [M + NH4]+ → 345.0 for hemslecin A and IS, respectively. The assay was linear over the concentration range of 0.5–200 ng/mL and was successfully applied to a pharmacokinetic study in rhesus monkeys. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

20.
A rapid LC–MS/MS method has been developed and validated for the determination of losartan (LOS) and its metabolite losartan acid (LA) (EXP‐3174) in human plasma using multiplexing technique (two HPLC units connected to one MS/MS). LOS and LA were extracted from human plasma by SPE technique using Oasis HLB® cartridge without evaporation and reconstitution steps. Hydroflumethiazide (HFTZ) was used as an internal standard (IS). The analytes were separated on Zorbax SB C‐18 column. The mass transition [M–H] ions used for detection were m/z 421.0 → 127.0 for LOS, m/z 435.0 → 157.0 for LA, and m/z 330.0 → 239.0 for HFTZ. The proposed method was validated over the concentration range of 2.5–2000 ng/mL for LOS and 5.0–3000 ng/mL for LA with correlation coefficient ?0.9993. The overall recoveries for LOS, LA, and IS were 96.53, 99.86, and 94.16%, respectively. Total MS run time was 2.0 min/sample. The validated method has been successfully used to analyze human plasma samples for applications in 100 mg fasted and fed pharmacokinetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号