首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amperometric responses of all‐solid‐state ion‐selective electrodes, recorded under potentiostatic conditions, were studied on example of potassium‐selective sensors with polypyrrole solid contact, at potential corresponding to reduction of the solid contact material and accompanying transfer of potassium ions across the membrane. Selective and stable in time linear dependences of current vs. logarithm of analyte concentration were recorded, resulting from high membrane resistance and changing membrane potential. The influence of experimental parameters as applied potential or thickness of the membrane was discussed. Advantages of the amperometric mode compared to potentiometric one relate to possibility of tailoring analytical parameters (sensitivity, magnitude of the signal) as well as over one order of magnitude decrease of the detection limit. The latter effect is achieved due to externally forced incorporation of potassium ions from the solution to the membrane, compensating their spontaneous release to the sample solution. A method of experimental setup simplification was proposed, with application of two‐electrode system, which can be used in the absence of external polarization source. The required driving force for the current flow was assured by spontaneous oxidation process occurring at the second electrode, coupled with reduction of the solid contact material of the ion‐selective electrode. In this case also stable in time calibration plots can be recorded.  相似文献   

2.
Multi‐walled carbon nanotubes (MWCNTs) were compared with poly(3‐octylthiophene) (POT) as ion‐to‐electron transducer in all‐solid‐state potassium ion‐selective electrodes with valinomycin‐based ion‐selective membranes. MWCNTs and POT were mixed with the other components of the potassium ion‐selective membrane cocktail (valinomycin, KTpClPB, o‐NPOE, PVC, THF) which was then applied on a glassy carbon (GC) substrate to prepare single‐piece ion‐selective electrodes (SPISEs). Results from potentiometric and impedance measurements showed that the MWCNT‐based electrodes have a more reproducuible standard potential and a lower overall impedance than the electrodes based on POT. Both types of electrodes showed similar sensitivity to potassium ions and no redox sensitivity.  相似文献   

3.
Applicability of a bipolar electrode system was tested for arrangements containing a typical ion‐selective electrode (ISE) connected with an electrode coated by a conducting polymer characterized by electroluminescence. In this case a selective response of the ISE membrane at one pole of the bipolar electrode is transduced to a fluorimetric signal obtained by reduction of the conducting polymer at the second pole. This signal transformation mode was studied on example of a simple closed bipolar electrode system composed of all‐solid‐state chloride‐selective electrode with polypyrrole transducer as the sensing pole and the reporting pole represented by electrode coated by poly(3‐octylthiophene) (POT) layer characterized by fluorescence in the neutral state. In this system selective and linear dependences of fluorimetric signal on logarithm of chloride ions concentration in turn‐on mode were recorded for optimized external voltage applied. Alternatively, a concept of cascade bipolar electrode system with incorporation of additional bipolar electrode being a polarization source for the sensing bipolar electrode with ISE and POT layer was also tested. A significant advantage of the cascade system is its possibility to work spontaneously without external polarization. For this case also linear calibration plots of fluorimetric signal vs. logarithm of analyte concentration were recorded.  相似文献   

4.
《Electroanalysis》2017,29(3):821-827
An all‐solid‐state polymeric membrane Ca2+‐selective electrode based on hydrophobic octadecylamine‐functionalized graphene oxide has been developed. The hydrophobic composite in the ion‐selective membrane not only acts as a transduction element to improve the potential stability for the all‐solid‐state Ca2+‐selective electrode, but also is used to immobilize Ca2+ ionophore with lipophilic side chains through hydrophobic interactions. The developed all‐solid‐state Ca2+‐selective electrode shows a stable potential response in the linear range of 3.0×10−7–1.0×10−3 M with a slope of 24.7±0.3 mV/dec, and the detection limit is (1.6±0.2 )×10−7 M (n =3). Additionally, due to the hydrophobicity and electrical conductivity of the composite, the proposed all‐solid‐state ion‐selective electrode exhibits an improved stability with the absence of water layer between the ion‐selective membrane and the underlying glassy carbon electrode. This work provides a simple, efficient and low‐cost methodology for developing stable and robust all‐solid‐state ion‐selective electrode with ionophore immobilization.  相似文献   

5.
《Electroanalysis》2005,17(10):895-900
A highly sensitive and selective membrane electrode with 9‐crown‐3 derivative (CD) as ionophore, potassium tetrakis‐(p‐chlorophenyl) borate as anionic additive (KTB), acetophenone (AP) as solvent mediator was prepared and investigated as a Be(II) sensor. The best performance was observed with the membrane having the percent ratio 30% PVC: 8% CD: 6% KTB: 56% Acetophenone. The poly(vinyl chloride) PVC membrane containing 9‐crown‐3 derivative (CD) directly coated on a graphite electrode, shows a Nernstian response for Be(II) ions over a very wide concentration range (1.0×10?1?1.0×10?7 M) with a detection limit of 8.0×10?8 M (ca. 0.72 ng/mL). It has a fast response time of ca. 20 s and can be used for at least 10 weeks without any major deviation in potential. The proposed sensor exhibits very good selectivity with respect to common alkali, alkaline earth, transition and heavy metal ions. The proposed sensor was used as end point indicator electrode in the titration of Be(II) ions with EDTA. It was also applied to determination of Be(II) in real sample.  相似文献   

6.
The design and properties of novel type of solid‐contact ionophore‐based ion‐selective microelectrodes are reported. The microelectrode is based on an insulated needle‐shaped metallic wire with an exposed apex. The ion‐to‐electron transducer is made of poly(3‐octylthiophene‐2,5‐diyl) and placed between an ion‐selective membrane and the metallic tip. The ion‐selective polyvinyl chloride‐based membrane is deposited atop the layer of conductive polymer. The length of the ion‐sensitive part of the electrode is less than 10 μm. pH and Mg2+‐selective microelectrodes were constructed and tested showing stable potential and fast response that are essential properties for the practical application of microelectrodes for localized scanning measurements.  相似文献   

7.
Miniaturized planar back‐side contact transducers (BSC) with chemically modified gold surface have been utilized as electrochemical sensors. The electrodes have been functionalized by sequential immobilization of aryl diazonium salts or alkanethiols and short peptide Gly‐Gly‐His. The applicability of gold substrates modified with aryl diazonium salts in voltammetric detection of copper(II) ions in aqueous solutions has been studied. The combination of two fundamental elements of the solid‐state electrode, i.e. back‐side contact (BSC) gold sensor and self‐assembled monolayers, allowed one to obtain reliable miniaturized copper(II) ion sensors. It can have important future applications in environmental sensing or in implantable biodevices.  相似文献   

8.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   

9.
In this work, a highly selective membrane triiodide sensor based on a new charge‐transfer complex of bis(2,4‐dimethoxybenzaldehyde)butane‐2,3‐dihydrazone with iodine (Iodide Charge Transfer complex: ICT) as membrane carrier is introduced. The influences of five different solvent mediators on sensitivity and selectivity of the proposed sensor were considered. The best performance was obtained with the membrane composition containing 30% poly (vinyl chloride), 63% DBP, 5% ICT and 2% HTAB. The electrode shows a Nernstian behavior over a very wide triiodide ion concentration range (1.0 × 10?7‐1.0 × 10?2 M), and a detection limit value of 8.0 × 10?8 M. The effect of pH on the potentiometric response of the sensor was also studied, and it was found that the response of the electrode is independent of the pH of the solution in the pH range of 4.0–10. The proposed sensor has a very fast response time (< 12 s), and good selectivities relative to a wide variety of common inorganic and organic anions, including iodide, acetate, bromide, chloride, fluoride, nitrite, nitrate, sulfite, sulfate, cyanide and thiocyanate. In fact the selectivity behavior of the proposed triiodide ion‐selective electrode shows great improvements compared to the previously reported electrodes for triiodide ion. The proposed membrane sensor can be used for at least 6 months without any divergence in the potentials. The electrode was successfully applied as an indicator electrode in the titration of triiodide with thiosulfate ion.  相似文献   

10.
《Electroanalysis》2004,16(16):1336-1342
The construction, performance characteristics, and application of polymeric membrane (PME) and coated graphite (CGE) thiocyanate‐selective electrodes are reported. The electrodes were prepared by incorporating the complex [Cu(L)](NO3)2 (L=4,7‐bis(3‐aminopropyl)‐1‐thia‐4,7‐diazacyclononane) into a plasiticized poly(vinyl chloride) membrane. The influence of membrane composition, pH of test solution, and foreign ions were investigated. The electrodes reveal Nernstian behavior over a wide SCN? ion concentration range (1.0×10?6–1.0×10?1 M for PME and 5.0×10?7–1.0×10?2 M for CGE) and show fast dynamic response times of 15 s and lower. The proposed sensors show high selectivity towards thiocyanate over several common organic and inorganic anions. They were successfully applied to the direct determination of thiocyanate in urine and saliva of smokers and nonsmokers, and as an indicator electrode in titration of Ag+ ions with thiocyanate.  相似文献   

11.
Accumulation of water in ion‐selective membranes, can lead to inconsistent potentiometric responses with solid‐contact ion‐selective electrode (SC‐ISE) formats, and hence it is essential to restrain their water uptake. We have used FTIR‐ATR spectroscopy to study how the water uptake is influenced by the intermixing of a poly(3‐octylthiophene) (POT) SC and a poly(methyl methacrylate):poly(n‐decyl methacrylate) (PMMA:PDMA) based polymeric membrane matrix, the only SC‐ISE system for which direct evidence was provided on the aqueous layer elimination. Numerical simulations of the FTIR‐ATR spectra of 1 or 5 wt% POT containing PMMA:PDMA membranes showed that the addition of 5 wt% POT to the membrane lowered the equilibrium water uptake, whereas the diffusion coefficients of water in the membrane were found to be less affected. Consequently, POT is beneficial for preventing the formation of detrimental water layers in the SC‐ISE structure.  相似文献   

12.
《Electroanalysis》2006,18(8):763-771
A novel concept of tailoring potentiometric responses of all‐solid‐state ion‐selective electrodes was introduced. The effect of composition and resulting properties of the conjugated polymer transducer, placed between the electrode support and ion‐selective membrane, on analytical characteristic of obtained sensors was studied.  相似文献   

13.
A highly selective PVC‐membrane electrode based on 2,6‐diphenylpyrylium fluoroborate is presented. The electrode reveals a Nernstian potentiometric response for sulfate ion over a wide concentration range (5.0 × 10?6‐1.0 × 10?1 M). The electrode has a response time of about 10 s and can be used for at least 2 months without any divergence. The proposed sensor revealed very good selectivities for sulfate over a wide variety of common organic and inorganic anions and could be used over a wide pH range (2.5–9.5). The detection limit of the sensor is 3.0 × 10?6 M. It was successfully applied to the direct determination of salbutamol, paramomycin tablets, and as an indicator electrode for potentiometric titration of sulfate ions with barium ions.  相似文献   

14.
《Electroanalysis》2005,17(24):2260-2265
A new Cu(II) ion‐selective PVC membrane sensor based on 6‐methyl‐4‐(1‐phenylmethylidene)amino‐3‐thioxo‐1,2,4‐triazin‐5‐one (MATTO) as an excellent sensing material was developed. The electrode exhibits a Nernstian slope of 29.2±0.4 mV per decade over a very wide concentration range between 1.0×10?1 and 1.0×10?6 M, with a detection limit of 4.8×10?7 M (30.5 ng/mL). The sensor possesses the advantages of short conditioning time, fast response time (<10 s), and especially, very good selectivity towards transition and heavy metal, and some mono, di and trivalent cations. The proposed electrode was successfully applied to the determination of copper in wastewater of copper electroplating samples and as an indicator electrode in potentiometric titration of Cu(II) ions with EDTA.  相似文献   

15.
《Electroanalysis》2005,17(4):327-333
Conducting polymers (CP) remain a promising material to construct stable potential all‐solid‐state ion‐selective potentiometric electrodes. The unique properties of poly(3,4‐ethylenedioxythiophene) doped with poly(4‐styrenesulfonate) ions, PEDOT‐PSS: high CP stability and affinity of doping anions towards Cu2+ ions, make it highly attractive for construction of all‐solid‐state copper(II)‐selective electrodes with outstanding selectivity. The additional benefits can arise from solution processability of commercially available PEDOT‐PSS system. This material was highly promising for a new sensor arrangement, i.e. to obtain disposable, planar and flexible all‐plastic Cu2+‐selective electrodes. These sensors can be obtained by casting a commercially available dispersion of PEDOT‐PSS (Baytron P) on a plastic, non‐conducting support material. The CP being both electrical lead and ion‐to‐electron transducer, was covered with plastic, solvent polymeric Cu2+ selective membrane. This extremely simple arrangement, after conditioning in dilute Cu2+ solution, was characterized with linear Nernstian responses within the activities range from: 0.1 to 10?4 M, followed by super‐Nernstian responses for lower activities. The latter result points to effective elimination of primary ions leakage from the plastic membrane / transducer phase and has resulted in significantly improved selectivities. Obtained log K values were equal to ?7.6 for Co2+, ?7.4 for Zn2+, ?7.2 for Ca2+ and ?6.8 for Na+, respectively.  相似文献   

16.
The “water layer test” is a crucial validation step of solid‐contact ion‐selective electrodes. It can confirm or contest the claim that the tested electrode is indeed a genuine solid contact electrode without an aqueous film between the ion‐selective membrane and its solid contact. Information about the presence of a water layer is essential for the interpretation of drifts in the electrode potentials commonly experienced with solid contact electrodes. Since its publication, the water layer test has been ubiquitously used, but without a standardized protocol the interpretation (or misinterpretation) of the test results led to uncertainties in the conclusions. Through both experiments and simulations based on theoretical models we have investigated the experimental parameters that can influence the results of the water layer test. We propose guidelines to minimize the possibility of misinterpretation of the results of the water layer test by considering the key factors that affect the shape of transients recorded during the water layer test. Most importantly, we emphasize the importance of allowing sufficient time for conditioning the tested electrode before the water layer test and providing adequate time for equilibration during the experiment. Using a thin ion‐selective membrane and thin solid‐contact layer for the tests is also recommended.  相似文献   

17.
《Electroanalysis》2006,18(9):888-893
A poly(vinyl chloride)‐based membrane of dimethyl 1‐acetyl‐8‐oxo‐2,8‐dihydro‐1H‐pyra‐zolo[5,1‐a]isoindole‐2,3‐dicarboxylate as a neutral carrier with sodium tetraphenylborate (NaTPB) as an anion excluder and 2‐nitrophenyl octyl ether (NPOE) as plasticizer was prepared and investigated as a Ba(II)‐selective electrode. The electrode exhibits a Nernstian slope of 29.7±0.4 mV per decade over a wide concentration range (1.0×10?6 to 1.0×10?1 M) with a detection limit of 7.6×10?7 M between pH 3.0 and 11.0. The response time of the sensor is about 10 s and it can be used over a period of 2 months without any divergence in potential. The proposed membrane sensor revealed good selectivity for Ba(II) over a wide variety of other metal ions. It was successfully used in direct determination of barium ions in industrial wastewater samples.  相似文献   

18.
A single‐piece solid‐contact Pb2+‐selective electrode was prepared by adding a thiophene oligomer into the ion‐selective cocktail directly. The one‐step fabrication yielded an electrode with Nernstian response spanning a wide concentration range of 10?3–10?8 mol L?1, and detection limit as low as 5.6×10?9 mol L?1. The electrode had a quick response time of approximately 10–15 s and showed excellent selectivity over the most common univalent and divalent cations. The practical application of the proposed electrode has been tested by determining Pb2+ in real water samples.  相似文献   

19.
《Electroanalysis》2006,18(16):1620-1626
A polyvinylchloride membrane sensor based on N,N′‐bis(salecylidene)‐1,2‐phenylenediamine (salophen) as membrane carrier was prepared and investigated as a Al3+‐selective electrode. The sensor exhibits a Nernstian response toward Al(III) over a wide concentration range (8.0×10?7–3.0×10?2 M), with a detection limit of 6.0×10?7 M. The potentiometric response of the sensor is independent of the pH of the test solution in the pH range 3.2–4.5. The electrode possesses advantages of very fast response and high selectivity for Al3+ in comparison with alkali, alkaline earth and some heavy metal ions. The sensor was used as an indicator electrode, in the potentiometric titration of aluminum ion and in determination of Al3+ contents in drug, water and waste water samples.  相似文献   

20.
《Electroanalysis》2006,18(11):1091-1096
N‐(2‐Pyridyl)‐N′‐(4‐methoxyphenyl)‐thiourea (PMPT) was found to be a suitable neutral ion carrier for the construction of a highly selective and sensitive La(III) membrane sensor. Poly(vinyl chloride) (PVC) based membranes of PMPT with potassium tetrakis (p‐chlorophenyl) borate (KTpClPB) as an anionic excluder and oleic acid (OA), dibutyl phthalate (DBP), benzyl acetate (BA) and o‐nitrophenyloctyl ether (NPOE) as plasticizing solvent mediators were constructed and investigated as La(III) membrane sensors. A membrane composed of PMPT‐PVC‐KTpClPB‐BA with the ratio 8.0 : 35.0 : 3.0 : 54.0 works well over a very wide concentration range (4.0×10?8 to 1.0×10?1 M) with a Nernstian slope of 19.6±0.2 mV per decade of activity between pH values of 4.0 and 9.0. The detection limit of the sensor was calculated to be 2.0×10?8 M (ca. 3.0 ppb). The sensor displays very good discrimination toward La(III) ions with regard to most common metal ions and lanthanide ions. The proposed sensor shows a short response time for whole concentration range (ca. 12 s). For evaluation of the analytical applicability of the La(III) sensor, it was successfully used as an indicator electrode for the titration of La(III) ions with EDTA. It was also applied to the determination of fluoride content of two mouth wash preparation samples and monitoring of La(III) ions in some binary and ternary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号